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PREFACE

Modelling parasite transmission has made enormous strides since the seminal 

models of Ross for describing malaria transmission developed during the early 1900s 

(Ross, 1911). McDonald’s use of the early malaria models to show that killing adult 

mosquitoes would be particularly effective in reducing infection transmission was a 

major advance in demonstrating the usefulness of theoretical analysis and population 

dynamics modelling in particular for guiding parasite control programmes, and since 

then parasite transmission models have also been used to guide the onchocerciasis 

control programme in Africa (Habbema et al, 1992), as well as for investigating best 

strategies for controlling a host of other parasites, including tuberculosis, trachoma 

and lately helminth infections, such as schistosomiasis and filariasis (Chan et al, 1995; 

Laing et al, 2007; Michael et al, 2004). The importance of this work is highlighted 

by greater understanding of threshold phenomena in transmission dynamics leading 

to the concept that natural “breakpoints” occur below which parasite systems will 

go extinct to the roles that worm mating behaviour and infection aggregation can 

play in both helminth transmission and control (Hairston, 1962; Macdonald, 1961, 

1965). The emerging trend from this work is thus the increasing use of understanding 

parasite transmission dynamics via the construction and analysis of mathematical 

models for use in guiding the development of informed parasite control strategies, so 

much so that this twin objective, viz improving understanding of parasite transmis-

sion dynamics and applying models to guide parasite control, has almost become a 

de facto goal of most recent work in parasite transmission modelling.

Another growing theme in parasite transmission modelling is the evolution 

of modelling techniques and conceptual frameworks, from the phenomenological 

investigation of key factors governing transmission dynamics at large population 

scales, based on the generalized Anderson and May models synthesized during the 

1980s and early 1990s, to the more detailed treatment of localized transmission of 

parasites at smaller population and spatial scales. Mathematically, this has meant 

that modelling techniques have increasingly moved from the application of simple 

dynamic differential equations-based analytic approaches to the use of simulation and 

other computationally intensive methods that focus on fitting and calibrating models 

to local data. This has raised debate about the roles of simplified a priori-derived 
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mechanistic models versus more complex but a posteriori models derived from data 

for generalizing understanding of transmission processes, and therefore how best 

to use models to further the theory of parasite transmission and accordingly its use 

for designing useful control options. This includes at its core the issue of how best 

to reconcile and model the impact of ecological and spatial scales as well as the ef-

fective addressing of other key, possibly scale-dependent heterogeneities of increas-

ing complexity, such as impacts of host immunity, genetic diversity, multi-species 

interactions, spatial heterogeneity and between and within community connections, 

and external forcing factors linked to environmental variation and change.

The increasing recognition of the public health importance of parasites has led 

to a more recent flowering of interest to tackle and resolve these modelling issues, 

culminating in the convening of both the Dahlem Conference on the population 

biology of infectious diseases held in 1981 and the follow up Issac Newton Institute 

programme on modelling infectious diseases held during 1993. These meetings 

summarized the then contemporary state of parasite ecology and epidemiology 

(Anderson and May, 1982; Grenfell and Dobson, 1995), but also underscored gaps 

and future research needs. This book is an attempt to present the progress made 

since these meetings in terms of both the conceptual and practical advances made in 

addressing key gaps in parasite transmission modelling (focus here restricted to the 

major microbial and helminth parasites), the new understanding these have yielded 

regarding the transmission and control of these parasites, and the future challenges 

they portend for population dynamics modelling.

We have organized the material in the book into two major sections, the first 

presenting the state of the art in models aimed at capturing complex or detailed 

aspects of transmission dynamics beginning with a review of the evolution of 

modelling malaria transmission. This first chapter, by Smith and Ruktanonchai, 

describes the process by which the simplifying assumptions underlying early 

modelling efforts were relaxed and models made more realistic (and generally 

more complex) over time as they became informed by new information from 

observational studies of vector biology and epidemiology. A key highlight is the 

need to consider the spatial scale in mosquito biting behaviour and pattern if more 

robust models of malaria transmission in real populations are to be developed. The 

second chapter, by Michael and Gambhir, focuses on the implications for disease 

transmission and control of differences in density-dependent processes regulat-

ing larval infection in the two major mosquito vectors transmitting filariasis. The 

authors demonstrate how a careful consideration and modeling of the occurrence 

and operation of multiple density-dependent processes acting on different stages 

of the parasite life cycle will be required to explain differential system persistence, 

transitions, and resilience to perturbations in different host-vector-parasite systems. 

In a similar spirit, but in a more general case, is the chapter by Pugliese (Chapter 

3) on the dynamics of multiple parasite species infecting a host population. This 

might be characterized as a phenomenological investigation focusing on general 

questions of competition or co-existence between parasite species. Given the 

prevalence of co-infections commonly observed in the field, this chapter presents 
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a foundation from which studies of specific co-infections might be explored using 

models.

Chapters 4 and 5 by Gaff and Schaefer and by Cornell exemplify current ad-

vances in modeling tick-borne disease transmission and helminths, respectively, but 

are also of particular interest because of the modeling approaches utilized. Gaff and 

Schaefer use metapopulation models, which have been common in population biology 

for many years, because tick population dynamics are very sensitive to local envi-

ronmental conditions. In addition, patch connectivity is shown to be of considerable 

importance, specifically with respect to control strategies. The notion of connectivity 

resurfaces in a similar context in the chapter by Seto and Carlton in Part II.

The chapter by Cornell is similar to that of Pugliese in its phenomenologi-

cal orientation, and stems from the observation that in the case of helminths “the 

processes affecting parasite demographics are density dependent—i.e., depend 

nonlinearly on the number of worms in the host—such as the risk that a female can-

not find a mate, or the modulation of infection rate by the host’s immunity.” Such 

questions are naturally addressed through the use of stochastic models as shown by 

the author. Although this chapter mainly focuses on simulation tools useful in the 

study of such models, Cornell also makes the case for the continued utilization of 

analytically tractable models in search of general principles not easily discernable 

from simulation studies.

In common with the metapopulation chapter of Gaff and Schaefer, Chapters 6 

and 7 by Remais and by Spear and Hubbard represent a transition from phenomeno-

logical studies at an unspecified scale to a local scale where the issue is to specify 

effective and sustainable local control tactics. Remais (Chapter 6) describes a vari-

ant of the Anderson-May model of schistosome transmission which is adjoined to a 

submodel of uninfected snail density as a function of temperature and rainfall.  To 

the extent possible, the model was parameterized to utilize both site-specific and 

site-invariant data for model calibration and subsequent use in short-term forecast-

ing. Spear and Hubbard (Chapter 7) elaborate on the parameter estimation issues 

and residual parameter uncertainty central to model use at this scale and propose 

an approach tailored to deal with the heterogeneous nature of local data typically 

available for this purpose.

Part II of the book serves to highlight the current use of transmission models 

in the planning, monitoring and evaluation of parasite control programmes, and 

begins with Chapter 8 by Buckee and Gupta, who review advances made in using 

mathematical models of transmission for the design of malaria control programmes. 

The chapter shows how ultimately the design of appropriate control programmes 

will rely on better understanding of the complex dynamical interactions between 

vector ecology, generation and impact of pathogen diversity on host immunity and 

development of drug resistance, and the pathology of the disease in humans, which 

is only now beginning to be studied as a result of advances particularly in pathogen 

genomics. In a similar vein, White and Garnett (Chapter 9) highlight the advances 

made in modeling TB to date but also underscore how further progress in predicting 

the effects of control will crucially require gaining a better knowledge of the natural 
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history and processes involved in disease transmission, particularly rates of change in 

latency, and impacts of exogenous reinfection, active disease and recovery from TB 

disease. They suggest that a key role of models in this regard is to pinpoint existing 

gaps in knowledge, and in conjunction with developments in diagnostics and genetic 

analysis, help guide empirical research to resolve such gaps.

One study that has begun to model the impact of control programmes on both 

infection dynamics and disease pathogenesis (blinding sequelae) is that described by 

Ghambir and colleagues for trachoma in Chapter 10. A novel aspect of their modelling 

framework, with implications for other diseases, is the combination of a compart-

mental SI contact type module to model microparasite infection dynamics with a 

module for capturing disease prevalence based on quantifying the number of prior 

infections (or infection “burden”) experienced by individuals in a population. 

The last two chapters in this section address the roles of parasite transmission 

models for decision-making in disease control. In Chapter 11, Michael and Ghambir 

describes the role that models can play in resolving the management questions re-

garding community level interventions for lymphatic filariasis elimination, including 

evaluating thresholds to meet various intervention endpoints, optimising control 

parameters for different endemic conditions, addressing the impacts of vector and 

spatial heterogeneities, and developing and applying rational monitoring and evalu-

ation protocols for assessing programme success. The results indicate that instituting 

an adaptive management approach to parasite control, focusing on supporting the 

development of locally appropriate and ecologically resilient control strategies will 

be crucial to resolving the uncertainties surrounding parasite population dynamics 

and the effectiveness of presently proposed intervention options. Seto and Carlton 

(Chapter 12), by contrast, emphasize how site-specific epidemiologic and disease 

control options should and can be incorporated into modelling frameworks to sup-

port routine decision-making by public health officials in endemic regions, focusing 

on the model developed by their group for Schistosoma japonicum transmission 

in China. They demonstrate in particular how their model structure can be used 

to consider the spatial interconnectivity of local populations, which has profound 

implications for deciding not only the spatial scale of control but also the potential 

of the parasite to invade, persist and spread as a result of changes in host, vector and 

pathogen migratory patterns.

We have chosen to separate the final two chapters of the book into an Epilogue 

because they almost certainly point to important future applications or developments 

in the mathematical modelling of infectious and parasitic diseases.  There are imme-

diate challenges in addressing the implications of climate change on the extent and 

intensity of environmentally mediated infectious diseases in general and parasitic 

diseases in particular. In Chapter 13, Parham and Michael present a simple model of 

malaria transmission sensitive to changes in rainfall and temperature variables.  Their 

example makes a convincing case that climate-driven transmission models will be 

crucial to understanding the rate at which P. falciparum and P. vivax may either infect, 

expand into, or go extinct in populations as local environmental conditions change. 

The chapter prompts two more general points, the first being that mechanistically-
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based models will be centrally important tools in assessing the impact of various 

climate change scenarios on disease transmission because, unlike statistical models, 

they possess at least some credible basis for extrapolating beyond the range of cur-

rent climatological experience. The second key point is that mechanistic models 

present a framework for assessing the relative impact of, for example, agricultural 

adaptation to climate change versus the narrow impact of temperature and rainfall 

effects in an otherwise unchanging environment.

The second dimension of future developments that is nearly upon us relates 

to the impact of genomics on the modelling of disease transmission and control. 

It is not difficult to foresee modest changes to current modelling structures to take 

advantage of elements of this vast new source of data. But it is also highly probable 

that altogether new approaches will emerge. Indeed, the utilization of genetic data 

relating to parasites, hosts, or vectors is only now beginning to occur in ecological or 

epidemiological studies of parasitic disease transmission. In Chapter 14, Tibayrenc 

argues for “an integrated approach to the genetic epidemiology and population ge-

nomics of Chagas disease.” Just as mathematical modelling of disease transmission 

originally grew from foundational studies of epidemiology and vector biology, it 

seems likely that we are at the beginning of a new class of modelling studies that 

will take advantage of the molecular epidemiology of disease transmission.  While 

Tibayrenc argues “that Chagas disease potentially constitutes a paradigm model for 

the integrated genetic epidemiology and integrated population genomic approaches 

to understanding of disease transmission,” we suggest that his argument also points 

to new opportunities and challenges for the next generation of mathematical model-

ling studies for clarifying parasite transmission dynamics in general, as highlighted 

by the work of Buckee and Gupta (Chapter 8) in using information from sequence 

data for modelling the impact of parasite diversity on host immunity and develop-

ment of resistance in malaria.

It is clear that many fascinating problems still remain to be addressed in para-

site transmission modelling, from better understanding of transmission processes 

and natural history of infection to investigating the impact of ecological and spatial 

scales, climate change, host immunity and social behaviour, parasite-host evolution-

ary dynamics and parasite community ecology on parasite transmission. This book 

captures some of the advances made in recent years and provides indications of 

ways forward for addressing these questions by shedding light on developments in 

conceptual frameworks and modelling tools as well as the emergence of new data 

forms for aiding model construction, testing and analysis. Another important advance 

has been the parallel development of robust computationally-intensive statistical 

methods to allow model testing and parameterization by aiding the fitting of models 

to complex data. This is an exciting area of work, which we believe will broaden the 

scope of mathematical modelling in investigating parasite transmission processes. In 

particular, we expect this advance will now allow modellers to begin the successful 

development and analysis of mechanistically-rich models of parasite transmission that 

will facilitate better integration of the variety of mechanisms increasingly recognized 

as important in simultaneously affecting transmission, including abiotic processes, 
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trophic and evolutionary interactions, movement in space, and behaviour and even 

physiology of the individual. We foresee a continuing bright future for using math-

ematical modelling to clarify parasite transmission dynamics and address problems 

related to effective parasite control. Ultimately, through this improved application 

of models to research and management, we expect that parasite control would be an 

achievable goal bringing benefits to a vast number of our fellow human beings.

Edwin Michael, PhD
Department of Infectious Disease Epidemiology

Imperial College 
London, UK

Robert C. Spear, PhD
Center for Occupational and Environmental Health

School of Public Health
University of California

Berkeley, California, USA
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Progress in Modelling Malaria 
Transmission
David L. Smith* and Nick Ruktanonchai

Abstract

Transmission of human malaria is a complicated dynamic process that involves populations 
of humans, parasites, and vectors. The first mathematical models of malaria are now more 
than a century old, and they are still a useful conceptual synthetic description of transmis-

sion, but they fail in some important ways. To address some of those failures, malaria transmission 
models have now been extended to consider malaria immunity, superinfection, and heterogeneous 
biting, among other factors. These extensions of the basic theory often arise from field studies in 
a single place, but tests of the theory come comparing standard measures of malaria taken from 
many places across the transmission spectrum. Several good models now exist that describe these 
basic patterns across the spectrum from low to high endemicity. The future of malaria modeling 
will involve applying these models to make decisions about real systems and finding new ways to 
test the underlying causes of the patterns.

Modelling Malaria Transmission, a Historical Introduction
Ronald Ross demonstrated that mosquitoes transmit malaria parasites.1 In the years that fol-

lowed, malaria control programs focused on reducing mosquito densities, largely through larval 
vector control. Eleven years after Ross’s seminal discovery, he wrote about malaria transmission 
in Report on the Prevention of Malaria in Mauritius:2

The infection rate varies, not only in neighbouring places, but even in the same place 
from year to year…. What is the cause of these variations?

This question is so important as regards both the general theory of malaria and the 
subject of prevention that we must endeavour to obtain clear ideas about it by careful 
reasoning (pp. 30).

In the subsequent pages, Ross made clear that “careful reasoning” meant a quantitative 
description of malaria transmission and proceeded to describe the first mathematical model of 
malaria.2 Waite provided a longer description of the model and detailed analysis.3 He noted that 
the malaria rate, now called the parasite rate or the prevalence of malaria, was constantly changing 
due to new infections, recovery, human migration, births and deaths. He considered migration 
to be too complicated to treat sensibly in a simple model, so like Ross he avoided the distraction 
and considered the malaria rate in a closed population. He described other aspects of the model 
in the following way:
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2 Modelling Parasite Transmission and Control

I shall assume … that both the human population and the anophelines are uniformly 
distributed over the area in question; that persons of all ages, whether they have previously 
suffered from malaria or not, are equally liable to infection; that the number of anophelines 
per unit of the population remains approximately constant during the period under review; 
and further that infected and non-infected persons are equally exposed to the risk of being 
bitten (pp. 422).

Waite was forthright about the limitations of his model; he considered the conclusions to be 
“tentative and suggestive,” but he hoped they would throw light on the factors that affected the 
malaria rate for “specialists who were considering remedies for the disease.” He pointed out that 
all of the simplifying assumptions of his model should be reconsidered and refined. Over the past 
century, knowledge about the parasite, vector and humans and their interactions has improved 
substantially and the terminology and technology has changed. Malaria models have expanded 
to consider most aspects of transmission, but the malaria-modelling pioneers laid out the basic 
malaria modelling agenda. From the beginning, malaria modelling has been motivated by malaria 
prevention. Models were developed to provide some useful general guidance provided the limita-
tions were considered and soon there was progress in moving beyond the limiting assumptions 
of the simple models.

The next seventy years saw a part of the agenda fulfilled. Ross published a second mathemati-
cal model in 1911 in the second edition of The Prevention of Malaria4 and again in an article to 
Nature;5 the model retained the same simplifying assumptions, but it was formulated as a set of 
ordinary differential equations. This model was analyzed in great detail by Alfred J. Lotka a year 
after its publication6 and in a series of five papers, expanded on some of the earlier themes,7-11 
notably the delay caused by sporogony.10 George Macdonald also considered the importance of 
this delay for control, noting that only old mosquitoes are infectious, so killing adult mosquitoes 
to shorten lifespan would be especially effective at reducing transmission.43 Macdonald’s analysis 
underestimated the potential benefits of killing adults since, by the assumptions of his model, the 
density of adult mosquitoes would also be reduced and the depletion of adults could potentially 
reduce recruitment of adults from larval habitat.12 Macdonald’s analysis also had some historical 
significance because it helped explain why DDT had been so effective at controlling malaria in early 
trials. This analysis helped to launch the Global Malaria Eradication Programme, operationalized 
as time-limited, intensive indoor residual spraying with DDT. Controversy over the programmatic 
implementation of malaria control during the Global Malaria Eradication Program and the failure 
to eradicate malaria continues, but the successes of malaria control during GMEP should also be 
remembered. This simple elaboration on the model fulfilled the mission of providing useful advice 
to people who do malaria control: few would argue against the great control potential of reducing 
the mosquito lifespan and that it should be pursued as an option if it is operationally feasible.

An important simplifying assumption from the first models was that untreated malaria infec-
tions in humans would clear at a constant per-capita rate. This is equivalent to assuming that the 
waiting time to clear an infection is exponentially distributed and that it would not differ in a 
person reinfected with one or multiple different parasites of the same species, or with multiple 
parasite species. In 1915, McKendrick first considered the problem of multiple infections and 
relapses in persons that have been infected “once, twice, thrice, etc. by the disease in question.13” 
In 1947, Walton revisited the question of multiple infections and provided a formula to describe 
the distribution of the number of infections that would be carried in a population.14 Macdonald 
also considered the question of multiple infections,15 but as others have described in some detail, 
his mathematical formulation does not match the formal description in the paper: the model was 
supposed to describe infections that clear independently, but it actually described infections that 
queue up and clear sequentially.16,17 Dietz, et al derived a simple formula for the waiting time to 
clear parasites when infections are complex, when the system is at the steady state and when new 
infections arrive at a constant rate, and clear independently at a constant per-capita rate.16,18 The 
model that was developed for a large-scale malaria control trial in Garki, Nigeria is now called the 
Garki Model, which also considered some aspects of immunity. Dynamical equations describing 
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changes in the distribution of the number of infections were described and analyzed by Bailey19 
and Dietz has written a synthetic review that considers all of these issues in some detail.20,21

By 1980 many of the assumptions of the simple models had thus been challenged, but the ones 
describing transmission remained fairly unchanged. Models up to that point had assumed that 
populations were closed (i.e., no migration), that human population sizes were essentially infinite 
and that biting was evenly distributed over space and time. Is biting even over space and time? 
How far do parasites move in a generation? How far do mosquitoes disperse after completing 4-6 
feeding cycles, the time required to complete sporogony? How many humans live within the radius 
of parasite or mosquito movement? Is biting within those distances randomly or proportionally 
distributed or is it poorly mixed? These questions are, perhaps, most relevant if the goal of malaria 
control is to understand how malaria control programs work or if the goal is to contain the spread 
of antimalarial drug resistance. There is substantial evidence that some people are bitten more than 
others based on body size,22,23 body odors,24 proximity to larval habitat25 and potential alternate 
hosts,54 housing design,26,27 preferential biting of infectious hosts28 and other factors. Recent theory 
has progressively relaxed the assumptions of ideal mixing to include heterogeneous biting,29-31 
preferential biting of infectious hosts,32 patch-based models of transmission on heterogeneous 
landscapes,33 mosquito oviposition behavior34 and finite host populations.29 These are increasingly 
drawing the connection between reasonably simple descriptions of heterogeneous biting in closed 
populations (i.e., without migration) and “realistic” descriptions of transmission that focus on the 
details of mosquito behavior. In this chapter, we will review theoretical and empirical studies that 
have moved beyond the simple assumptions that were made by Waite and Ross.

Complexity, Parsimony and Robust Descriptions of Transmission
Why should malaria be modelled and what sort of model is worth making? Again, Ross pro-

vides one of the best answers in the introduction to a seminal paper about the use of mathematics 
in epidemiology, in which he points out that the study of epidemics is fundamentally concerned 
with numbers.35 He also notes that different Climates display striking differences in the seasonal 
patterns of cases and in their frequency and he asks what accounts for these differences. “Why, 
indeed, should epidemics occur at all?” He proposes that there are two ways to answer this question 
that he called the a priori and a posteriori approaches. A posteriori approaches were synonymous 
with statistics; “we commence with observed statistics, endeavour to fit analytical laws to them 
and so work backwards to the underlying cause.” To work a priori, “we assume a knowledge of the 
causes, construct our differential equations on that supposition, follow-up the logical consequences 
and finally test the calculated results by comparing them with the observed statistics.” Ross did not 
believe that it would be possible to answer his general question by relying on one approach or the 
other. He notes that many papers had investigated epidemics a posteriori, but few had done so a 
priori. He then proceeds to develop a purely theoretical approach to the “Theory of Happenings” 
and calls his theory “a priori pathometry”. The name has not caught on, but the paper established 
some of the foundations of epidemiology and provided rigor to ideas that are so basic in epidemi-
ology, we almost forget they exist.

It is also worth asking what sort of model is worth making. On the subject of model building, 
George P. Box, a statistician, famously reminds us that “all models are wrong, but some are useful.” 
It is not enough, however, to merely know that models are wrong—“the practical question is how 
wrong do they have to be to not be useful?”36 Few would deny that the Ross-Macdonald model 
has been conceptually useful, but the model does not describe malaria well enough under field 
conditions to serve as an adequate quantitative guide for most purposes.18,37

Since there are many uses for models, before building a model, it is worth thinking about how 
the model would be used. Models serve many purposes, including conceptual understanding, 
prediction, statistical inference, strategic planning, persuasion and decision-making. It may not 
be possible to describe how a model will be used in advance, so it is often best to build a range of 
different models and a solid basis for understanding how the models correspond and how well 
they serve different purposes.
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One of the most important functions of a model is to structure thought about quantitative 
problems.38 In this context, it is important to recognize the distinction between “theory” and 
“models.” In science, theory refers to a set of deliberately oversimplified models that have been 
extensively tested and that are consistent with existing evidence collected from observations and 
experiments. Developing and testing models form the core activities of scientists, but the word 
“model” applies equally well to animal models, in vitro models, conceptual models, statistical 
models and mathematical models. Likewise, mathematical models can have many purposes as part 
of basic and applied scientific processes and each model should be suited to its purpose. Theory 
is the unifying framework of science, but it is rarely codified into a single, grand unified model. 
No model can serve all purposes equally well, because models inevitably make tradeoffs between 
generality, realism and precision; to be useful, a model must be robust.39 As an example, a malaria 
model can strive to be “realistic,” in the sense that the model is increasingly representational, but as 
the model becomes more representational, it comes to describe one particular location at a certain 
point in time. Moreover, the more realistic a model becomes, the greater the data needs; however, 
the availability of data has been a limiting factor. In modelling malaria, it is useful to conduct 
studies that build a broad range of models and that explicitly consider the question of robustness. 
Some property of a model is robust if the predictions hold over a wide range of assumptions and 
models. When models fail to agree, we would say that a finding is not robust and careful analysis 
would provide guidelines about when the simpler assumptions breakdown. It may not be possible 
to describe malaria under every circumstance, but it might be useful to find “rules of thumb” and 
simple functional forms that describe malaria transmission in different contexts and at a range of 
spatial scales—what approximations are necessary to strike the right balance to have a model that 
is both simple and generally useful? It may not be possible to build a single model that would work 
in every place, but it may not be wise to try and build a different model for every place. A practical 
way forward is to consider adequate models for malaria transmission by context, including the 
biting habits of the vector and their bionomics and the transmission intensity.

Transmission Intensity and Its Estimations
Before reviewing mathematical models of malaria transmission, it is worth describing how 

malaria is measured in different contexts.40 What malariometric indices have been developed 
to measure malaria and its intensity? One of the earliest indices used was the spleen rate, or the 
proportion of a population with a palpably enlarged spleen. The spleen rate is reasonably nonin-
vasive, easy to measure and it is closely associated with malaria. Other causes of splenomegaly are 
reasonably rare, making a high spleen rate a good indicator of ongoing malaria transmission. After 
parasites could be reliably identified by microscopy, the parasite rate became a more commonly 
used index of malaria transmission intensity, a measure that addresses the proportion of humans 
with parasites in their blood.41 A third method of measuring malaria examines the prevalence of 
some marker of previous infection that is present in blood serum—a measure of the proportion 
of humans currently with antibodies that developed in response to malaria infection.42 Typically, 
seroprevalence rises with age and gives a robust measure of previous infection compared with age. 
The spleen rate, the parasite rate and seroprevalence all measure the fraction of the population 
with particular conditions at some point in time. Measures of prevalence are useful in malaria if 
they consider something that changes slowly—immunological responses wane slowly, untreated 
infections and splenomegaly last for several months.

An alternative way to measure malaria in humans is to ask how often a person gets infected. 
Measuring incidence (i.e., counting the number of events) is different from measures of prevalence. 
Prevalence measures the proportion of the population in some given state, while incidence measures 
the number of events—how many new infections occurred in a population over some fixed period 
of time. In models, the per-capita incidence rate is called the force of infection or the hazard rate 
for infection. Ross called this quantity the happenings rate, h.35 It is difficult to measure the force 
of infection, however, since it is impossible to observe infections directly and since many of them 
never present with clinical symptoms. Despite these difficulties, force of infection can be measured 
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by tracking a cohort of uninfected people until they become infected. The average waiting time to 
infection is the inverse of the force of infection, 1/h. Since infants are born uninfected, the waiting 
time to the first infection, called the infant conversion rate, is a measure of the force of infection. 
So, too, is a measure of the rise in seroprevalence or the parasite rate with age.

Clinical malaria is defined as fever with parasites. The definition of clinical malaria counts 
anyone who is infected with malaria and gets a fever from any cause, such as a viral or bacterial 
infection, thus, it is not always known how many of those fevers were due to malaria. An alterna-
tive index of transmission intensity would be the prevalence of clinical malaria, the population 
with clinical malaria at any point in time. Fevers are short compared with infection response, 
so clinical malaria is less common than infection with malaria. Fevers have multiple causes, 
moreover, so measures of disease prevalence tend to be a less specific as an index of malaria. 
Splenomegaly, by comparison is also a measure of disease prevalence, but it is generally more 
informative because the duration of fever is comparatively short and the incidence of spleno-
megaly from other causes is lower. Because the prevalence of clinical malaria is not reliable, 
clinical incidence is often measured by counting the number new cases of clinical malaria that 
occurred in a population over a fixed period of time. This measure is generally standardized to 
a fixed population and time, i.e., 200 cases of clinical malaria (or malaria-attributable clinical 
episodes), per thousand people, per year.

The spleen rate, the parasite rate, seroprevalence, the force of infection and clinical incidence 
all measure malaria transmission intensity on the human population, but none of them are per-
fect indices. Some infections are treated and clear before an immune response develops; this and 
waning immune responses can affect the accuracy of seroprevalence. Treated infections can clear 
rapidly and untreated infections also clear after some time, so the parasite rate is a measure of recent 
infection, modulo drug treatment to achieve a cure. Parasite rates tend to rise with age in young 
children and they decline with age throughout adolescence and adulthood, so crude parasite rate 
are a poor index of transmission intensity. The parasite rate in older children (aged greater than 
2 but less than 10), called the standard parasite rate does provide a reliable, if imperfect, index of 
transmission intensity.43 Although complete immunity to infection may not occur in malaria, the 
incidence of clinical malaria does decline with age.44 Clinical incidence displays age-specific patterns 
that differ by endemicity and this makes it an unreliable index of transmission intensity.

Transmission intensity can also be measured by counting infections in the invertebrate host 
and entomological indices of transmission intensity can and should play a major role in defining 
interventions. The human biting rate is defined as the number of bites by vectors, per human, 
per day. The entomological inoculation rate (EIR) is the product of the human biting rate and 
the sporozoite rate, the proportion of mosquitoes that have sporozoites in their salivary glands. 
Another way to characterize EIR is the expected number of infectious bites, per person, per day 
(dEIR) or per year (aEIR). Just as there is a force of infection for humans, there is also a force of 
infection for mosquitoes. There are two ways to characterize transmission of the parasites from 
humans to mosquitoes—what fraction of bites on humans infects a mosquito and what frac-
tion of bites on an infected (and presumably infectious) human infects a mosquito? The former 
measure is called the net infectivity of the human reservoir and the latter is called the efficiency 
of transmission (denoted c).

HBR and EIR are measures of actual transmission intensity, but there is another class of indices 
that measure potential transmission intensity. One of these measures is the stability index (S): how 
many human bloodmeals does a vector take over its lifetime? The stability index is a composite 
measure, the product of three quantities: the mosquito lifespan (denoted 1/g; the probability a 
mosquito survives one day is denoted p � e–g), the length of a feeding cycle (denoted 1/f; the time 
elapsed between two bloodmeals) and the number of human bloodmeals as a proportion of all 
bloodmeals (Q). The stability index is the product (S � fQ/g). The parasite requires several days 
to complete sporogony (denoted n), and the probability that a mosquito survives long enough 
for the parasite to complete sporogony (e–gn) also serves as a measure of potential transmission. 
Additionally, a measure of potential transmission is the number of vectors per human (m), which 
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can help measure potential transmission. This is directly related to the rate that new adult vectors 
are recruited into the mosquito population, scaled by human population density (denoted l and 
m � l/g). Vectorial capacity (V) is defined to be the number of infectious bites that would eventu-
ally arise from all the mosquitoes that bite a single human on a single day. It is related to the other 
indices by the formula (V � l S2 e–gn ).

The most useful index of potential transmission is the basic reproductive number (denoted R0), 
defined as the expected number of mosquitoes that would arise from a single infected mosquito 
after one complete generation of the parasite. It is calculated by summing all of the infectious 
bites that arise from the mosquitoes that are infected by a single person (i.e., vectorial capacity) 
over the entire duration of a simple, untreated infection. If parasites clear from humans at the 
per-capita rate r, then the average waiting time to clear an infection is 1/r. Not all infectious bites 
actually produce an infection, only a fraction do (denoted b). It is defined for a population with 
no immunity and no malaria control. The formula for the basic reproductive number is related 
to vectorial capacity:

R0 = bcV / r

This number forms a foundation for understanding malaria transmission, but its derivation 
relies on the simplifying assumptions made by Ross of an ideal, well-mixed population.

This list of malariometric indices is not comprehensive, but it does give a conceptual overview of 
the points in the life cycle where the intensity of malaria transmission can be measured. In malaria 
epidemiology, it is important to measure these quantities for many reasons. These malariometric 
indices provide a critical test of the models (for example, see ref. 45). How well do the models capture 
the variability in these indices and their relations to one another across the range of transmission 
intensity? The Ross-Macdonald model proposes that there is a functional relationship between 
these indices, but it does not incorporate immunity or a range of other factors that are known to 
be important. The Garki model does incorporate some aspects of superinfection immunity, but it 
does not correctly predict what would happen if malaria transmission were abruptly interrupted. 
Indeed, the frontier in malaria modelling today is to fulfil Ross’s vision of creating a model based 
on a set of a priori assumptions that is capable of explaining all of the patterns and much of this 
involves retreading old ground.

Preferential Biting and Uneven Exposure
The first major departure from ideal population mixing was motivated by studies from sexually 

transmitted diseases. The number of sexual partners and sexual activity in a population of humans 
are clearly uneven; many people are not sexually active, some are absolutely monogamous, some 
people have multiple partners and a few people in the population are highly sexually active. The 
idea is intuitive to most of us who suspect that everyone else is having more sex than us. If one 
thinks of sex as a risky behavior, it serves as a useful metaphor for malaria exposure.

It would be surprising if exposure to malaria were evenly distributed among all the humans in 
a population, but how large is the variance in biting heterogeneity and how is it described? One 
way is to characterize the proportion of bites received by a small fraction of humans. It has been 
proposed that 20% of the population gets 80% of the bites. Mosquito behavior and ecology af-
fect the variability in exposure to malaria and the issue is especially complicated because malaria 
is transmitted by dozens of anopheline species with different biting preferences, biting habits, 
larval habitat and bionomics. Heterogeneous biting may also depend on other contextual details, 
such as the distribution of larval habitats and humans and the availability of alternative human 
hosts. Despite the variability, most studies of malaria have tended to focus on vectors that bite 
indoors and at night.

Muirhead-Thomson’s classical study of biting counted bites on family members outside their 
huts and concluded that adults were bitten more than children and men were bitten more than 
women.22 Muirhead-Thomson also observed that infants behaved differently from older children 
and adults—the infants were more likely to shake off the mosquitoes, even while asleep. Other 
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studies caught blood fed mosquitoes, analyzed bloodmeals and identified the host they had fed on. 
These studies found that the proportion of bites that a person received was roughly proportional to 
the proportion of skin in the household.23 Another curious pattern was that, relative to body size, 
children younger than 18 months old were bitten at a much higher rate than their siblings who were 
older than 18 months. However, Spencer’s study of 8 pairs of mothers and infants sleeping side by 
side found that the infants were never bitten, even though the mothers were bitten frequently.62 
Pregnant women account for a larger portion of bites.63 These studies and many others like them 
(see Port and Boreham,23 for a review of the early studies) have found different and contradictory 
patterns depending on where the samples were taken and depending on whether the study evalu-
ated landing catches or did bloodmeal analysis. The robust pattern from all these studies has been 
that larger individuals were bitten more than smaller individuals.

Other studies have demonstrated that mosquitoes prefer to feed on individuals who carry 
gametocytes, potentially through certain symptoms such as increased skin temperature and 
CO2 expiration.55 Mosquitoes with sporozoites often spend significantly more time probing 
blood vessels and are more likely to attempt to resume a bloodmeal if the feeding has been 
interrupted.56 This altered feeding behaviour also contributes to a higher mortality of infected 
mosquitoes, probably due to increased feeding activity, which increases likelihood of mortal-
ity from host defensive behaviour.57 Early studies suggested that multiple feeding was rare, but 
these studies tend to sample mosquitoes at random. Multiple feeding may be more important 
than it seems if it is more frequent among infectious mosquitoes.

These studies have described the proportion of bites received by individuals who live within 
the same household, but they don’t address the questions of how many bites are received by a 
household. One way to count household heterogeneity is to use insecticides to knockdown all 
the vectors within a household; the distribution of vectors per household is extremely hetero-
geneous (for example, see Fig. 2a in ref. 46). This raises the question of what accounts for the 
huge variability in exposure among households.

The choice of a bloodmeal host is determined by the mosquito search algorithm and chance; 
mosquitoes follow a set of rules, but host choice is probably opportunistic. Mosquitoes begin 
their search for a bloodmeal host from the larval habitat where they deposited their eggs. 
As mosquitoes tack across the wind, odor plumes cause mosquitoes to change direction and 
follow the plume upwind. As they approach the neighborhood of a potential host, differ-
ent olfactory cues, CO2, movement and body temperature draw mosquitoes to a particular 
household or host.58 Mosquito behavior at the point of contact probably depends on host 
defensive behavior, personal protection and the mosquito’s physiological state: a mosquito 
that has few energy resources in reserve would be willing to take more risks than one with 
plentiful resources.

It follows that one would expect to find enormous variability in household risk that will be 
related to a large set of factors. The easiest one to characterize is proximity to larval habitat; 
indeed, many studies have found that proximity to larval habitat was an important risk fac-
tor for infection or clinical malaria.59 Other factors include the odors that emanate from a 
particular host—including the “limberger cheese” smell.24 The type of house is an important 
factor in determining household risk—some kinds of houses and housing designs are easier for 
mosquitoes to find and enter.26,27,47,48

It is also important to note that malaria control can be a cause of heterogeneous biting.29 
If some people in a house use an insecticide-treated bednet (ITN), the mosquitoes may be 
deflected onto those who do not. ITNs can have an area repelling effect and this would deflect 
some of the mosquitoes from houses that use ITNs onto those who do not. Since ITNs also 
kill some mosquitoes, delay feeding and redirect mosquitoes onto alternative hosts that would 
have fed on a human,61 the average level of risk may be reduced.49

All of this discussion has focused on biting that occurs indoors and at night, but vectors bite 
in the forest in some areas and in the city in others. In different contexts, the cause of heteroge-
neous biting can will be related to the factors that predispose people to be at risk.
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Although it is often useful to try and explain the variance in exposure to malaria, the 
total variance in exposure is, itself, an interesting quantity for transmission. When biting is 
heterogeneous, it means that biting is more intense on a small portion of the population and 
less intense on the rest. This makes it easier for malaria to invade a population when rare, 
essentially because person who is bitten most frequently is most likely to become infected 
and most likely to infect a mosquito. Thus, malaria would be able to persist at lower levels 
of vectorial capacity; if a2 is the coefficient of variation of biting exposure, then R0 � bcV(1 
� a)/r.30,31,50 On the other hand, at some higher level of vectorial capacity, the average level 
of risk would be reduced in the population. This leads to a different relationship between 
EIR and PR.45

Immunity and the Infectious Reservoir
The flip side of human exposure is to ask how often vectors become infected after biting a human. 

Another way to ask the question is which humans infect most of the vectors. Immunity to malaria 
is not like immunity to measles—it does not fully protect against infection or disease and it may 
have poor immune memory.51 Thus, herd immunity does not tend to develop. In highly endemic 
areas, immunity reduces parasite densities in older children and adults and it reduces the frequency 
and severity of disease.52 Gametocyte densities do decline and adults also naturally develop trans-
mission blocking immunity, where human antibodies in the bloodmeal prevent infection of the 
mosquitoes.53 The infectivity of humans thus declines, but direct observations demonstrate that 
the adult humans in highly endemic areas remain infectious to mosquitoes.54

The Garki model described some of these effects of immunity by considering semi-immune 
individuals that would gain and lose infections; non-immune infected individuals would pass into 
the semi-immune individuals at some low rate, reflecting the idea that immunity is acquired after 
exposure to malaria.18 The Garki model assumed that lower gametocyte densities in semi-immune 
individuals would render them uninfectious, despite being infected.

After Garki, a new trend started in malaria modelling. The Garki Model was the motivation 
for considering malaria as a familiar compartmental model, called an SIRS model. The infective 
classes are typically interpreted as susceptible (S), infected and infectious (I) and recovered and 
immune (R). The trick was to relabel all “semi-immune” individuals as being recovered and im-
mune because they were not infectious, whether or not they were infected.16,55-57 The strength of 
the Garki and SIRS models were that they provided a simple conceptual way of explaining why the 
PR declines in older age classes, when the relationship between PR and age was far from the steady 
state. PR tends to rise with age in infants to a plateau in young children. At approximately age ten, 
it starts to decline. It then falls by about a third of the maximum by age 20 and by two-thirds of 
the maximum late in life.41 Both the Garki model and the SIRS model produce curves with this 
basic shape and a simple version of this model has been used to describe shifts in the age at infec-
tion when ITNs are deployed,58 although the models predict that the age when PR first begins 
to decline would rise sharply at low PR, a trend that was not observed in analysis of data.41 The 
failing of the SIRS models is that it often invites misleading comparisons with acute, immunizing 
childhood diseases such as measles. In malaria, immunity to severe malaria is acquired rapidly and 
usually early in life,59 but infection continues throughout life.

Following in the SIRS tradition, the first epidemiological model concluded that immunity 
would not affect the evolution of resistance.60 A subsequent model considered the dynamics of 
infection in semi-immunes, like the Garki model and showed that immunity would, indeed, affect 
the evolution of resistance.61 The different predictions arose because the simplifying assumption 
about immunity in the SIRS model forced a kind of rigidity—a person was either immune or 
not. When that stiffness was relaxed, the quantitative effects of immunity could play out in the 
models in interesting ways. Despite being less infective, they were also less likely to have clinical 
malaria. Since the demand for antimalarial drugs was lower, they would form a natural refuge for 
drug-sensitive parasites.
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One of the great failures of malaria modelling has been its neglect of disease as an important 
epidemiological state that is distinct from infection. Indeed, there is a sharp distinction between 
infection and disease in malaria. Clinical malaria is important for estimating burden, for under-
standing the need for antimalarial drugs and their potential to control malaria and for under-
standing drug pressure and the evolution of antimalarial drug resistance. Most models assume 
that blood stage infection is a good measure of the infectious reservoir; this may not be true in 
places with good health systems where most clinical malaria is treated and cured. In those places, 
gametocytemia could persist in people who have no other signs of infection. Clinical disease and 
gametocytemia as important epidemiological states apart from asexual parasitemia remain largely 
unexplored by mathematical models (but see ref. 61). Incorporating clinical disease, the gain and 
loss of immunity and infectivity and identifying where these factors are important are important 
questions in malaria modelling.

Malaria Transmission in Real Populations
The assumption that populations are infinite and well-mixed are useful for formulating theory 

based on ordinary differential equations, but to apply these to real populations, it is necessary to 
tie the model populations at a particular place and time. For such populations, the distribution of 
human populations, local density and the flight distances of mosquitoes matter. Other aspects of 
mosquito behavior also affect the validity of the basic models. Mosquitoes can senesce, feed multiple 
times per life-cycle, postpone oviposition (called gonotrophic disassociation), rest in warm humid 
refugia in otherwise inhospitable environments, feed on nectar and engage in other behaviors 
that are not accounted for by the simple formulas. Understanding the factors that explain malaria 
transmission may require some understanding of these factors, but it is probably not necessary to 
describe every detail of mosquito behaviour in a mathematical model.

As a starting point, it is worth asking how the simple models get things wrong. Models that 
consider finite human populations and their spatial distribution provide a starting point for 
thinking about transmission in a more general setting. In a very large, well-mixed population, 
every infectious bite will land on a different person. In a small population with proportional 
mixing, the same individuals who make it easier for malaria to persist absorb multiple infections 
and this will tend to reduce the risk for everyone else and slow down the invasion.29 Bailey’s 
approach to space reformulated partial differential equation models of malaria to consider 
diffusive movement of mosquitoes and hosts.19 Later work considered diffusive movement of 
mosquitoes on heterogeneous landscapes by partitioning space into patches and showed that 
the distributions of larval habitat and humans form a template for mosquito aggregation and 
hence, for transmission.33,34 These extensions of the basic theory beg the question of whether it is 
necessary to consider local transmission in an explicitly spatial context. How far do mosquitoes 
move from the time when they become infected and when they become infectious? How bad 
are models of proportional mixing (i.e., heterogeneous biting) as an approximation to poor 
mixing (i.e., locally small populations)?62

These ideas are particularly important for control. How far do the protective effects of ITNs 
extend beyond the populations where they are used?64 How wide does a malaria control zone 
have to be to minimize the chances of transmission by mosquitoes?64 How close do cows or other 
alternative hosts have to be to provide a zooprophylactic effect?65

At larger spatial scales, the movement of infected mosquitoes is not nearly as important as the 
movement of infected humans. Some infected mosquitoes do move long distances in the cargo 
holds of airplanes and ships63,64 and one such event sparked a major epidemic in Brazil.65-67 Perhaps 
the most striking example of the global spread of malaria has been the spread of antimalarial drug 
resistance throughout southeast Asia and South America from a few points of origin and from 
southeast Asia into Africa. Human movement among areas that have the potential for malaria 
transmission is hard to describe, but it is an important aspect of malaria spread. This calls for em-
bedding existing models of malaria transmission into a broader metapopulation context as a way 
of understanding how malaria parasites persist in their vector and human host populations.
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Conclusion
Mathematical models are nothing more than a tool for thinking carefully and quantitatively 

about malaria and they may be the only way for thinking rigorously about complex quantitative 
aspects of biological systems. As a scientific activity, they often engage in a different way of do-
ing science and they provide a natural bridge to the applied sciences and public health. Models 
begin from a set of assumptions and work forward—if the model is correct, then the predictions 
of the model should be reflected in real world phenomena. This methodological difference 
often makes the logic of modelling seem backwards to other scientists. Ross’s vision was that 
mathematical modelling would provide a complementary methodology to more conventional 
statistical approaches. There is, however, an enormous gap between the kinds of predictions 
that models make and the kind and amount of data that is collected in the field. This is often a 
failure of modellers to engage with field biologists, but it is also a failure of field biologists to 
recognize how collaboration with modellers could improve their study designs to account for 
the real complexity of malaria. The most notable exception of this was the Garki model that 
was field-tested during the Garki Project. It could be argued, however, that the Garki model 
was the first time that the models were field tested, more than six decades after the first malaria 
model. In response to a new call for malaria eradication, there are many questions that arise 
in planning, monitoring and evaluating malaria control programs that could be informed by 
modelling. Models could be used in the process, at least in theory, but to be useful, models and 
modellers must engage with data and many different kinds of scientists to repeat the aims of the 
Garki project many times, although probably not on the same scale. By iteratively working from 
a priori to a posteriori and back, we can anticipate a race to the finish. Will we first eradicate 
malaria or understand it? It may not be possible to do one without the other.
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Chapter 2

Vector Transmission Heterogeneity  
and the Population Dynamics and 
Control of Lymphatic Filariasis
Edwin Michael* and Manoj Gambhir

Abstract

A long-standing gap in lymphatic filariasis epidemiology is quantifying the potential 
effect that heterogeneous infection processes occurring in the major mosquito vec-
tor genera may have on parasite transmission and control. Although previous studies 

have focussed on examining the forms of the density dependent mechanisms regulating larval 
infection in various mosquito genera, there has been little work done thus far in investigating 
how such differential processes might interact with density-dependent processes occurring in 
other stages of the parasite life cycle to influence overall transmission dynamics between areas 
exposed to different transmitting vector populations. Here, we explore the impact that dif-
ferences in vector genus-related larval infection dynamics may have on filariasis transmission 
and control using newly derived parasite transmission models incorporating the forms of the 
density-dependent processes regulating larval infection in the two major vectors transmitting 
filariasis, viz. culicine and anopheline mosquitoes. The key finding in this work is that filarial 
infection thresholds, system resilience, transmission dynamics and parasite response to control 
efforts, can all be influenced by the prevailing transmitting mosquito genus. In particular, we 
show that infection thresholds may be raised, system resilience to perturbations lowered and 
effects of repeated mass treatments in eliminating infection enhanced in anopheline filariasis 
compared to culicine filariasis, as a direct result of the occurrence and action of multiple posi-
tive density-dependent mechanisms influencing infection in this vector-parasite system, such 
as the “facilitation” function regulating larval infection dynamics in the vector and the inverse 
probability function governing adult worm mating in the host. These findings indicate that 
anopheline filariasis may be easier to eradicate than culicine filariasis for a given precontrol 
infection level, although the actual intensity of interventions required to achieve eradication 
may in fact be similar to that for culicine filariasis because of the higher infection levels gener-
ated as a result of the “facilitation” process in Anopheles transmission areas.

Introduction
It has long been suggested that variable within-vector host nonlinearities, including density-de-

pendent processes affecting parasite larval establishment and development and vector mortality, 
could act as major factors underlying the observed heterogeneous transmission dynamics of 
vector-borne diseases.1,2 Addressing the impacts of this heterogeneity has critical resonance for 
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studies of the population dynamics and control of the vector-borne helminthic disease, lymphatic 
filariasis, in particular, given the long-held belief that the forms of the density-dependent processes 
acting on larval infection dynamics may differ significantly between the taxonomic group of mos-
quitoes involved in parasite transmission.3-8 The key empirical finding from this body of work is 
that the density-dependent mechanism regulating larval infection in one major group of filarial 
mosquito vectors, viz. culicine mosquitoes and to some extent Aedes mosquitoes,8 may be of the 
negative density dependent or “limitation” form, whereas larval infection dynamics in the other 
main parasite-transmitting mosquito vector, the Anopheles group of mosquitoes, is thought to be 
governed by a positive feedback or “facilitation” process.3,4,8 The latter mechanism is particularly 
interesting because it could lead to an unstable equilibrium population size, below which the 
parasite would be driven to extinction.3 As discussed previously, this outcome would clearly make 
anopheline-transmitted filariasis easier to eradicate through intervention efforts,5-7 a conclusion 
which has reinforced the impression that differences in the prevailing transmitting vector genus 
could largely underlie the inconsistencies observed in the success of filariasis control programmes 
in different endemic areas.3,9,10

In reality, however, as pointed out recently8,11 to fully understand the impact of these vector 
genus-specific infection processes on overall filariasis transmission and control, it is also necessary 
to consider how these processes interact dynamically with other density dependent processes oc-
curring in other parts of the parasite life cycle.1,2 This is because without considering the action 
of such multiple density-dependent factors, it will be unclear as to what extent vector-specific 
infection processes alone will contribute to overall parasite transmission regulation, particularly 
given the likely stronger negative feedback processes, e.g., acquired immunity, which may regulate 
infection in human hosts.9,12 Furthermore, recent work has also underscored the crucial impact that 
the simultaneous presence and interactions between multiple density-dependent processes acting 
at different points in the life cycle of a population can have on the dynamics of parasite system 
persistence, including the values of parasite extinction thresholds.13,14 These findings suggest that 
a composite analysis investigating the simultaneous effects of infection processes in both the vec-
tor and human host will be crucial to efforts for determining how vector-parasite combinations 
occurring in different endemic regions will interact with the efforts presently being proposed to 
achieve the global control of this debilitating parasitic disease.

Here, we review recent work in modelling lymphatic filariasis transmission15 in order to system-
atically investigate the impact that vector genus-specific density-dependent processes may have on 
overall parasite transmission, persistence and control. Specifically, we focus on the incorporation 
and simultaneous analyses of the “limitation” and “facilitation” functions found to govern larval 
infection, in addition to density-dependent mechanisms thought to regulate adult worm infection 
in the human host, such as worm mating probability and acquired immunity, in the two major 
parasite-vector species combinations implicated in the transmission of filariasis, viz. one in which 
the vector intermediate host are culicine mosquitoes and the other in which they are anopheline. 
We begin the chapter by first providing details of the life history of the parasite, characteristics 
and locality of the major transmitting vectors and particulars underlying the specification and 
quantification of the functional forms for the “limitation” and “facilitation” mechanisms regulating 
larval development in culicine versus anopheline vectors respectively. This is followed by details of 
methods that allow successful incorporation of these functions into overall transmission models 
for describing culicine- and anopheline-transmitted filariasis population dynamics, highlighting in 
particular the key need for and derivation of expressions that describe the actions of these functions 
at the host population level. Model analyses are then described for investigating the influence of 
vector genus-specific density-dependent processes on system stability, infection\extinction thresh-
olds and parasite population dynamics. The import of these vector genus-specific transmission 
dynamics for the control of lymphatic filariasis from the application of the currently-proposed 
mass chemotherapy intervention regimens are then examined using model simulations. We end by 
underscoring the usefulness of these models and future work to improve their utility in resolving 
remaining questions regarding filariasis transmission dynamics and control.
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Lymphatic Filariasis Disease and Parasite Life Cycle
Lymphatic filariasis is a major cause of acute and chronic morbidity of humans in tropical 

and subtropical areas of Asia, Africa, the Western Pacific and some parts of the Americas, with 
over some 1.2 billion people thought to live in areas where they are at risk of infection.16 Of 
the estimated 120 million cases of people living with active filarial infection currently, 91% are 
caused by the filarial worm, Wuchereria bancrofti, while Brugia malayi and B. timori infections 
account for the other 9%.17,18 Brugia timori is only known to be endemic in Timor and the Flores 
islands of the Indonesian archipelago.19 These lymphatic-dwelling parasites cause damage to the 
lymphatic system which leads to lymphoedema, genital pathology (especially hydrocoeles) and 
elephantiasis in some 41 million men, women and children.17,20 A further 76 million, most often 
with the transmission stage, microfilariae (Mf ), in their blood, are thought to have hidden internal 
damage to their lymphatic and renal systems. Indeed, recent estimates made by the WHO sug-
gest that lymphatic filariasis may be the second leading known cause of permanent and long-term 
disability worldwide.21

The filarial parasites have biphasic life cycles involving the definitive mammalian host and 
various species of mosquito vectors. W. bancrofti seems to be exclusively a human parasite, whereas 
Brugia spp. are zoonotic in limited situations. Given the involvement of vectors, parasite transmis-
sion is indirect, with human infection initiated by the deposition of the third-stage (L3) infective 
larvae on the skin of the host following the bite of an infective mosquito. The deposited L3 larva 
penetrates the skin at the site of the bite and migrates to the lymphatic system of the host where 
they mature over 12 months or so into adult male and female worms.22 Most estimates of the 
life span of the adult parasite suggest a period of 5-10 years.23,24 The lymphatic-dwelling filariae 
are dioecious and undergo ovoviviparous reproduction resulting in the release of Mf from adult 
females, which circulate in the host bloodstream. The life-cycle is completed when these Mf 
are ingested with the bloodmeal taken by female mosquitoes of a susceptible vector species and 
develop over 10 to 14 days into the infective-stage L3 larvae capable of infecting a host.

Mosquito Vectors of Lymphatic Filariasis
Both the W. bancrofti and B. malayi filarial parasites are unique among the various mosqui-

to-transmitted parasites in that larval development can take place in several genera of mosquitoes. 
A great diversity of mosquito spp. in the genera Culex, Anopheles, Aedes and Mansonia are capable 
of acquiring and supporting the development of Mf to infective L3 larvae. Indeed, based on the 
geographic distribution of these vectors, three main zones of filariasis transmission are recognized: 
the South Pacific islands and some limited areas of South East Asia, where Aedes vectors predomi-
nate; West Africa, Papua New Guinea, Vanuatu and Solomon islands where Anopheles mosquitoes 
are principal vectors; and China, South East Asia, Egypt, East Africa, the Caribbean and Latin 
America where the infection is transmitted mainly by Culex species, although A. gambiae and A. 
funestus form the predominant vectors that transmit filariasis in rural East Africa (Table 1). The 
variations in the biological characteristics of each vector genus listed in Table 1, including the 
differential vector-specific forms of the density-dependent processes regulating larval infection 
noted above, provide the bases for the long-held belief that the taxonomic group of mosquitoes 
involved in filariasis transmission may determine not only parasite transmission dynamics but also 
the effectiveness of any control strategy aimed at interrupting transmission in an area.

Vector-Parasite Infection Relationships
The impact that vector genera differences can have on filariasis transmission and control was 

first pointed out by Pichon et al,3 who suggested that this heterogeneous effect may arise from 
variations in the form of density dependent processes acting on parasite uptake and development 
in the different filaria-transmitting vector genera. In particular, these workers and others (see 
study references given in Snow et al8) used experimental data on Mf uptake to L3 development 
obtained from mosquitoes fed on human volunteers to show that if x is the number of Mf ingested 
by a mosquito and y is the number which survive to become infective, then limitation is the 
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negative feedback process occurring when the parasite yield y/x decreases linearly with x, whereas 
facilitation is the positive feedback process occurring when y/x increases with x. The fits of these 
linearized models to data were first used to show as far back as 1974 that limitation may be most 
commonly associated with filarial infections of culicine mosquitoes, whilst facilitation may be 
associated with filarial infections of anopheline mosquitoes.3 Despite this, (1) variability in the 
results of fits to individual studies, (2) statistical problems connected with the fitting of linearized 
versions of essentially nonlinear functions to data25-27 and (3) the lack of appropriately parameter-
ized functional forms for the Mf-L3 relationship (but see Subramanian et al28), has meant that 
the mathematical development of filariasis transmission models incorporating density-dependent 
regulatory functions reflecting variations in vector genus-related infection dynamics has thus far 
been hampered, with the result that current models are based on only one form of the functional 
relationship describing the Mf to L3 development process, viz. that related to the limitation func-
tion in culicine mosquitoes.29,30

Quantifying the Mf-L3 Functional Response in Vector Populations
Given the above uncertainties, a major focus of recent work in modelling lymphatic filariasis 

transmission has been on quantifying the suggested relationships occurring between Mf uptake 
and L3 development in culicine and anopheline mosquitoes in the form of functional response 
equations that allow ready incorporation into overall filarial parasite transmission dynamics mod-
els.8,15,28 Here, we describe particulars of our recent work in this area based primarily on specifying 
and fitting the appropriate functional response models to published mosquito feeding experiment 
data, as follows.15

First, for Culex mosquitoes, given that a limitation response occurs which results in a satura-
tion in the production of L3 larvae as Mf loads in bloodmeals increase,8 the Mf-L3 uptake and 
development data can be fitted to the function:30

  (1)

where m is the Mf density in the human host (20 �L blood), �S1 is the maximum limiting value of 
L3 numbers developing in the mosquito and r1 controls the rate at which the L3 development rises 
with Mf ingested. The fit of this function to data collected from all available published studies8,31 
is shown in Figure 1A. Note that while this is the appropriate functional form for the uptake of Mf 
and the development of L3 mosquitoes in a single mosquito from one bloodmeal, a fundamental 

Table 1. Important biological characteristics of the major filariasis vectors

Characteristics Culex Quinquesfasciatus Anopheles spp. Aedes spp.

Locality China, South East Asia, 
Egypt, East Africa, Urban 
West Africa, Caribbean 
region, Latin America

West Africa, rural East 
Africa, Papua New Guinea, 
Vanuatu, Solomon islands

South Pacific islands, 
South East Asia

Breeding sites Pools, domestic water  
supplies, septic tanks

Brackish water, swamps, 
streams, puddles

Tyres, drums, wells, 
cisterns, tins, crab 
holes, tree holes

Biting time Night Night Day

Biting location Indoors Indoors and Outdoors Outdoors

Infection 
process 

Limitation Facilitation Limitation or 
proportional
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need, as remarked above, is to account for the effect of the distribution of Mf among hosts in 
order to quantify the average L3 output in a community if we are to model population-level ef-
fects. In order to do this in a manner consistent with field observations,28,31 the average L3 level 
may be calculated in the mosquito populations by assuming that they take bloodmeals from a 
human host community in whom the mean Mf level is M and is negative binomially distributed 
with shape parameter k. This population-averaged uptake function (Lpop) can be derived as (see 
Gambhir and Michael15):

L f Mpop S    (     ( ))� �� 1 1  (2)

where:

 (3)

This function is very similar to the individual uptake curve, but there is now a dependence on 
the shape parameter k, which determines the level of parasite aggregation in the human hosts.

For anopheline mosquitoes, a closely-related function to that used to model the Culex uptake 
response, but describing behaviour consistent with facilitation in the part of their Mf-L3 uptake/
development curves corresponding to low Mf densities, can be given by the equation:

 (4)

As for the Culex function, �S2 is the maximum limiting value of L3 numbers developing in 
the mosquito and r2 controls the rate at which L3 development rises with Mf ingested. This 
function has two features that distinguish it from the Culex function above. The first is the fact 
that it is raised to the power of two, an operation that introduces a concavity into the shape of 
the function prior to its limitation-associated saturation at very high Mf loads. The second is the 
offset parameter (T) appearing in the exponent of the exponential function, which ensures that 
the uptake value rises smoothly from its zero point only when the Mf density in a bloodmeal is 

Figure 1. Functional forms relating microfilaria (Mf) uptake (from 20 �L host blood) and L3 
development per mosquito in the two vector genus studied in this work. The squares denote 
observed data for each vector respectively (sources in Gambhir and Michael15). The curve 
fitted to the (A) Culex data is a limiting function of Mf (equation 1 in the text) whereas the 
Anopheles curve in (B) describes a development response that begins with a facilitation phase 
which then approaches an upper limit at higher Mf uptakes (equation 4 in the text).



18 Modelling Parasite Transmission and Control

greater than a threshold density given by the value described by T. Biologically, this functional 
behaviour may be associated with the action of the anopheline cibarial armature or teeth, which 
prevents Mf from passing undamaged into the mosquito gut at intakes lower than the threshold 
T32 but which allows the undamaged passage of the majority of ingested Mf at higher ingestion 
loads owing to the protection afforded due to the entanglement of the first passing Mf about 
the cibarial teeth. The best-fit of the model to published data is shown in Figure 1B. Again, this 
function needs to be averaged over the host population leading to the derivation of the following 
population-averaged function:15

 (5)

where Pnb(m; k, M) is the negative binomial probability mass function, with mean M and aggrega-
tion parameter k. Table 2A provides the best-fit parameter values for both the Culex and Anopheles 
functions given in Equations 1 and 4.

Derivation of Vector-Specific Models of Lymphatic Filariasis 
Transmission

The basic deterministic dynamical model for lymphatic filariasis transmission primarily con-
sists of a series of coupled differential and partial differential equations for three state variables 
describing the changes in numbers over time of three key parasite life stages—worm burden (W), 
Mf count (M) and stage L3 larvae (L)—and one state variable describing the acquisition and loss 
of immunity to parasites in human hosts (I).30,33,34 Structurally, these equations are divided into 
those which describe changes in parasitic infection in the human definitive hosts (W, M, I) and 
the L3 larval equation (L), which is used to calculate the change in larval density in the mosquito 
intermediate hosts. The equations pertaining to changes in parasite stages in the human host 
population describe change as a function of host age as well as time, since model inputs—such 
as exposure to mosquito biting—vary over age.33,35 By contrast, because the processes governing 
the rate of change of the average L3 larval density within the mosquito population operate on 
much shorter timescales than those in the human host population, the model assumes that the 
mosquito larval density comes to equilibrium as soon as the corresponding human host parasite 
and immunity levels are computed. The coupled partial differential and differential equations 
comprising the basic dynamical model are thus:
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Table 2A.  Parameter values used in the model for the vector uptake functions. These 
values were obtained through nonlinear least squares fits the data collated 
by Snow and Michael31

Parameter Value Standard Error

�S1 4.406 0.362
r1 0.019 0.058
�S2 4.395 0.332
r2 0.055 0.004
T 0 N/A

Table 2B.  Descriptions and values of the parameters of the vector-specific filariasis 
models. Typical values of some of the parameters cannot be given due to 
their multi-valued or dynamic nature15

Parameter 
Symbol Definition Value 

� Number of bites per mosquito 10 per month

V/H Ratio of number of vectors to hosts Various

�1 Proportion of L3 leaving mosquito per bite 0.414

�2 Proportion of L3 leaving mosquito that enter host 0.32

s2 Proportion of L3 entering host that develop into adult 
worms

0.2

� Strength of acquired immunity 0.112

� Death rate of adult worms 0.0104 per month

� Production rate of Mf per worm 0.33 per month

� Death rate of Mf 0.1 per month

g Proportion of mosquitoes which pick up infection 
when biting an infected host

0.37

� Death rate of mosquitoes 5 per month

k(M) Aggregation parameter from negative binomial 
distribution

k0 � k1M (0.0029 ��0.0236M)

h(a) Parameter adjusting rate at which individuals of age 
a are bitten

Linear rise from 0 at age 
zero to 1 at 10 years

L* Equilibrium value of the larval density (see Equation 
5)

—

�(W, k) Mating probability as a function of worm burden W 
and aggregation parameter k

—

�(a) Probability that an individual is of age a —

f(M) Variable component of the population-averaged Mf 
uptake and L3-larval development function. This is a 
function of the average Mf level M (see Equations 8 
and 10 below for specific functional forms)

—
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The above equations are similar to those previously published for the lymphatic filarial transmission 
model described by Norman et al,30 but with a major difference in that here a mating probability 
(ϕ(W, k) � 1 �(1 � W/2k) (1�k),36) has been incorporated into the mean Mf count (M) equation 
to account for the production of Mf as a function of density-dependent worm mating within the 
human hosts. This probability function is dependent upon the worm burden W and the shape 
parameter k of the negative binomial distribution describing parasite dispersion among hosts, with 
the form selected to account for the dioecious and polygamous nature of W. bancrofti worms.9,36 
The dependence of the shape parameter of the negative binomial distribution on the average worm 
burden is considered to be identical to that used to describe the relationship between Mf prevalence 
and intensity, i.e., it is a linear function of worm burden with gradient k1 and with zero intercept 
k0. Since the rates associated with the vectors are considerably faster than the time taken in the 
development of worm and Mf burdens, the L3 density is assumed to instantaneously equilibrate. 
By setting the right hand side of Equation 9 to zero and rearranging, the following expression is 
obtained for the instantaneous value of the L3 larval density, L*:

L
g a f M da

� �
�

�
�   

( )(     ( ))

   

�� �

� ��

1

1

 (10)

here, the parameter � denotes the saturation value of the vector Mf uptake function as detailed 
above (equations 2 and 4, i.e., Ks1 denoting the saturation value for the Culex uptake/development 
function and Ks2 the corresponding value for the Anopheles function). This expression thus readily 
allows the incorporation of the culicine and anopheline larval infection dynamics into the basic 
filariasis model in order to mimic vector-specific transmission dynamics via both substitutions 
for � as describe above and by substituting the f (M) term in equation 10 with equations 3 and 5. 
Table 2B provides a description of the equation parameters along with the values used in these 
models (details in Gambhir and Michael15).

Impact of Vector-Specific Infection Processes on Parasite System 
Stability, Persistence and Extinction
System Equilibria, Transitions and Stable States

The impacts of the combined vector and host density-dependent processes investigated in this 
study on the persistence and extinction dynamics of the filarial parasite system can be examined by 
conducting a numerical analysis of the stability of the solutions of the model equations based on 
varying initial values of L* (details in Gambhir and Michael15). The results from these analyses for 
both the culicine and anopheline models are shown in Figure 2. The graphs depict the steady states 
of host Mf infection prevalence (converted from modeled Mf loads using the expression: P(M, k) � 
1 �(1 � M/k) k, where P is the prevalence, M is the Mf density and k is the aggregation parameter 
of the negative binomial distribution15,30), as well as the nature of their transitions that appear along 
the vector biting rate gradient with and without the inclusion of worm mating probabilities in the 
respective models. As noted previously,15 these results, i.e., the existence of multiple parasite system 
regimes or states demonstrate the likely occurrence of complex dynamics in the transmission of filari-
asis. Here, however, we focus on the impact of vector genus transmission heterogeneity in giving rise 
to this complexity. Thus, in the culicine case, when worm mating probabilities were not included and 
where the L3 uptake and development function shows only limiting behaviour, the results show that 
the system gives rise to just one threshold—a vector threshold biting rate (TBR) below which the 
only stable equilibrium is at the zero parasite level (Fig. 2A). Above this transmission threshold, a 
transcritical system bifurcation appears to occur leading to the existence of endemic stable infection 
levels that increase in magnitude smoothly and reversibly as biting rates increase. Thus, no worm 
breakpoints and hence existence of alternate infection states are possible, i.e., only positive endemic 
states occur above the TBR, the system losing its stable endemic infection state smoothly to converge 
into a zero-infection state as the vector biting rate is reduced below the TBR (Fig. 2A). The effects 
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of introducing the worm mating function into the culicine model is shown in Figure 2B. In contrast 
to the situation when the function was excluded, it is clear that this can bring about a discontinuous 
jump in the Mf prevalence at the TBR giving rise to the appearance of three equilibria, two stable 
ones separated by an unstable one, mimicking thus the occurrence of a subcritical bifurcation in the 
system dynamics. The unstable equilibrium points of the model comprise a set of positive-valued 
worm breakpoints—the largest of which was found at the TBR—producing an unstable dynamic 
boundary or separatrix with increasing biting rates across which the system converge to either a zero or 
endemic stable equilibrium state. Thus, at vector biting rates above the TBR, bistable infection states, 
one endemic and the other zero-infection, can exist depending upon whether initial L* load values 
can give rise to infection levels above or below the unstable breakpoint values (Fig. 2B). By contrast, 
in the anopheline-mediated system in which the L3 development function was of a facilitation form, 
a subcritical bifurcation was observed in which a discontinuous jump in the Mf prevalence at the 
TBR occurs regardless of whether the worm mating function is included or not (Figs. 2C,D). The 
values of the vector biting rate at which the nonzero worm breakpoints exist were also far greater in 
this case than for the culicine system (Figs. 2B vs C,D). In addition, both the TBR and the maximum 

Figure 2. The effect of varying the vector biting rate on the equilibrium Mf prevalence among 
human hosts when the vector intermediate host was culicine and when the worm mating 
probability was (A) and was not (B) included in the model and when the intermediate host 
was anopheline with (C) no mating and with (D) mating probabilities included. Inclusion of 
the mating probability introduced a set of breakpoints (dotted line) in the case of Culex and it 
raised and increased the range of the breakpoints in the case of Anopheles. The labelled Mf 
values on the y-axes correspond to the maximum breakpoints, whereas additionally in each 
graph the solid curve (A) and vertical dashed drop lines (B-D) crossing the x-axes denote the 
threshold biting rates (TBRs) estimated in each scenario corresponding to (A) 4, (B) 9, (C) 197, 
(D) 271 vector bites per month. From Gambhir and Michael.15
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worm breakpoint values were found to be raised by the inclusion of the mating probability function. 
Note that the values of these infection thresholds represent the first such model-based estimates 
obtained for anopheline filariasis.9,10 Their values compared to those obtained for these thresholds 
in culicine filariasis (maximal breakpoint prevalence of 1.01% versus 0.53% and TBR of 271 versus 
just 9 per month) also confirm that parasite elimination thresholds are likely to be significantly higher 
in anopheline filariasis.9,13

System Resilience to Perturbations
The results of perturbing the Culex and Anopheles models by varying initial L3 values from the 

vicinity of the respective unstable equilibria are illustrated in Figure 3. Each age-dependent Mf 
prevalence curve in these graphs represents the solution of the model equations for a given initial 
L3 seed value set to a value either above or beneath the breakpoint level for a vector biting rate 
above the estimated TBR. The results depict that an increasing perturbation below the breakpoint 
curve leads to an eventual age-Mf prevalence of zero across all ages, whereas a similar perturbation 
above the breakpoint leads to stabilisation at the equilibrium endemic level (Fig. 3). The sizes of 
the regions between the unstable and either stable equilibrium state are also depicted in the figure 
for each model and clearly provide a qualitative measure of the extents of the respective basins of 

Figure 3. The direction of change of the Mf prevalence age-profile among human hosts 
when the intermediate host was culicine and the initial Mf prevalence was (A) above and (B) 
below the breakpoint value (0.21%) with a vector biting rate of 11 per month; and when the 
intermediate host was anopheline with initial Mf prevalence (C) above and (D) below the 
breakpoint value (0.82%) with a vector biting rate of 280 per month. Each age-dependent 
curve represents a perturbation around the initial unstable equilibrium curve with the black 
arrows indicating the direction in which these curves are likely to travel on the way to the 
stable equilibrium. From Gambhir and Michael.15
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attraction to either stable state. Given that they in turn provide a measure of the maximum amount 
each system can be changed before losing its ability to recover to either stable state, these results 
also graphically offer an insight into the likely resilience of the two parasite systems to each of the 
stable state. For example, the results show that in culicine filariasis, the basin of attraction to the 
endemic equilibrium state is much larger in size compared to the case in anopheline filariasis, while 
the opposite is true in the case of the basins of attraction to the zero infection state (Fig. 3A,B 
versus C,D). The larger basin of attraction to the endemic state but the smaller basin of attraction 
to the zero state thus suggests that culicine filariasis may be more resilient to perturbations of the 
system away from the endemic attractor compared to anopheline filariasis, i.e., the former may be 
more resilient to extinction compared to the latter.

Figure 4 portrays the effects of perturbing the anopheline system near the vicinity of the unstable 
worm breakpoint values (by varying initial L3 values) on the corresponding Mf age-profiles for 
three increasing values of the vector biting rate. For each value of the biting rate, the system was 
initialised as before, above and below the breakpoint Mf prevalence level (given by the red curves 
in Fig. 4) and the direction in which the profiles move was then tracked (indicated by the arrows 
in the figure). The results show that as the biting rate increases, the relative sizes of the basins of 
attraction for the zero-parasite and endemic equilibrium can change considerably. In particular, 
the range of Mf prevalence values that led to the zero equilibrium diminished while those that led 
to the endemic equilibrium (upper curve) grew, indicating that system resilience to perturbations 
even for anopheline filariasis will be greater at higher vector biting rates.

System Hysteresis
The existence of multistable states separated by an unstable boundary when the TBR has been 

exceeded introduces the possibility of the occurrence of bistability or hysteresis in the transmis-
sion dynamics of lymphatic filariasis.37 Figure 5A illustrates this phenomenon in terms of the 
equilibrium Mf prevalence versus vector biting rate relationship for the model in which the vector 
is culicine. The bottom black arrow shows the path taken by the equilibrium Mf prevalence when 
the biting rate is increased to the point on the far right (the 0.1% Mf breakpoint). Until this point 
is reached, the Mf steady state remains at zero. There is a jump (a subcritical bifurcation) at this 
point to the endemic equilibrium stage (upward pointing red arrow) and the steady state remains 
on this stable branch as the biting rate is increased further. Decreasing the biting rate to a point at 

Figure 4. The direction of change of the Mf prevalence age-profile among human hosts at 
different anopheline vector biting rates. Results are shown for vector biting rates of (A) 280 
(just above the TBR of 271), (B) 350 and (C) 600. In each case, the blue curves represent initial 
perturbations around the Mf age-profile corresponding to the breakpoint Mf prevalence (red 
curve) and the black arrows indicate the direction in which the curves are likely to travel on 
the way to attaining the zero or endemic stable equilibrium. From Gambhir and Michael.15 A 
color version of this image is available at www.landesbioscience.com/curie
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which the endemic state appeared, however, will not return the system to the zero Mf prevalence 
state. For this to happen, the biting rate needs to be reduced further backward to the TBR occur-
ring at the maximal breakpoint (see top black arrow), at which point the endemic state loses its 
stability and jumps back to the origin or zero state (downward pointing red arrow) and remains 
there as the biting rate is decreased further. These different paths followed by the parasite system 
for increasing versus decreasing the vector biting rate constitute the hysteresis loop effect. Figure 
5B shows the equivalent loop for the system in which the vector is anopheline. Here, the loop 
has a considerably greater range in the space, indicating both that the emergence or re-invasion 

Figure 5. Hysteresis loops in the Mf prevalence/vector biting rate plane for (a) culicine and (b) 
anopheline intermediate hosts, showing the two asymmetrical ways by which a shift between 
alternative Mf stable states can occur with varying vector biting rates. If the parasite system is on 
the lower zero state but at high vector biting rates and thus close to the worm breakpoint bifur-
cation boundary, a slight incremental change in Mf levels may bring it beyond the birfurcation 
(say at 0.1% Mf prevalence) and induce a drastic shift of the system to its endemic equilibrium 
(rightmost red arrow). If one attempts to restore the parasite-free equilibrium state by reducing 
the vector biting rate (black leftward arrow), the system shows hysteresis. A backward shift to the 
parasite-free equilibrium (leftmost red arrow) will occur only if the vector biting rate is reduced 
far enough to reach the TBR bifurcation point. The hysteresis loop is wider in extent for the 
anopheline model compared to culicine-transmitted filariasis. From Gambhir and Michael.15 A 
color version of this image is available at www.landesbioscience.com/curie.
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of the filarial endemic state for a similar input of infected hosts (0.1% Mf prevalence) will occur 
at a significantly larger vector biting rate and the subsequent state transition to the zero state will 
require a greater reduction of vector numbers compared to the culicine case (Fig. 5A).

Impact of Vector-Specific Infection Processes on Age 
Patterns of Infection

The results depicted in Figure 6 show that apart from effects on parasite system characteristics, 
including infection thresholds and dynamics of system resilience to perturbations, vector genus-spe-
cific infection processes may also play an important role in contributing to the differential com-
munity age-patterns of filarial infection observed between the culicine versus anopheline vectored 
filariasis endemic areas.9,10 The curves in the figure represent the equilibrium age-Mf prevalence 
patterns generated by the culicine and anopheline-specific filariasis transmission models for pro-
portionately increasing rates of the monthly vector biting intensity and show that largely as a result 
of the greater levels of L* produced in the case of anopheline filariasis, for proportional increases in 
vector biting higher age-prevalences of infection will be produced in Anopheles-mediated filariasis 
transmission areas compared to culicine areas. They also indicate the likely greater occurrence of 
convexity in the age-patterns of infection in anopheline compared to culicine filariasis for pro-
portionately similar vector biting rates. This is because of the greater cumulative experience of L3 
infection levels in the anopheline transmission communities, which would give rise to the earlier 
generation of significant amounts of host acquired immunity in these populations compared to 
populations exposed to culicine mosquitoes. Field support for these differential infection patterns 
have come partially from work carried out by Michael and Bundy12 and Michael et al,9 who clearly 
showed that infection prevalences could be significantly higher for a given vector biting rate in 
communities exposed to Anopheles compared to Culex vectors.

Figure 6. The equilibrium age-Mf prevalence curves predicted by the culicine (upper panel) 
and anopheline (lower panel) filariasis models for proportionally increasing monthly vector 
biting rates. Results are shown at just above the TBR and at 1.5 and 2 times the TBR rates 
estimated for each vector (see text).
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The Impact of Vector Genus on the Dynamics of Filariasis Control
The impact of the interaction between the culicine- and anopheline-vector infection pro-

cesses with a key presently proposed mass drug treatment regimen on the dynamics of filariasis 
infection elimination is modeled and portrayed in Figure 7. The curves in the figures show the 
simulated yearly decline in mean Mf prevalence in the cases of anopheline and culicine filariasis 
respectively as a result of annual combined diethylcarbamazine (DEC)/albendazole (ALB) mass 
drug treatments (efficacy values as listed in the label to the figure) applied at 80% drug coverage 
to communities with different precontrol infection prevalences. Two features of these results 
are immediately apparent with respect to the impact of vector-specific population dynamics on 
filariasis control by mass chemotherapy. First, a notable finding is that for a similar precontrol 
infection prevalence, mean community Mf prevalences will drop much more steeply to meet 
parasite elimination thresholds in the case of anopheline filariasis compared to the more gradual 
decline in infection trends generated for the case of culicine filariasis. This will clearly reduce the 
number of treatment cycles required to achieve infection elimination in the case of anopheline 
filariasis for a given precontrol infection level (compare curves in Fig. 7A versus 7B) and is a direct 
outcome of the two different forms of density-dependent regulation of L3 output occurring in 
culicine versus anopheline vectors. Essentially, this result reflects the fact that as Mf load drops 
progressively over time in the host community as a result of repeated drug treatment, the severe 
negative density-dependent regulation of L3 output will ease in the case of culicine filariasis lead-
ing to a proportionately higher output of L3 at lower community Mf loads whereas the opposite 
result, viz. a lower L3 output as Mf load drops, would occur in the case of anopheline filariasis. 
The second notable feature of the results in Figure 7 is that this effect on the duration of annual 
mass treatments required to achieve parasite elimination will be further enhanced given the likely 
higher worm breakpoint value that may occur in anopheline (the 1.01% Mf prevalence breakpoint 
threshold depicted by the dot-dashed horizontal line in Fig. 7B) compared to culicine filariasis (the 
0.53% Mf prevalence threshold depicted by the dot-dashed line in Fig. 7A). The dramatic effect 
that this difference in parasite elimination thresholds and the rates of decline induced in mean 
community Mf prevalences as a result of drug treatment in anopheline versus culicine filariasis 
is highlighted by the simulation results shown in the graphs for the high precontrol community 
prevalence of 20%. These show that while at least 8 annual combined DEC/ALB mass treatments 
at 80% population coverage will be required to reduce Mf prevalence from an initial level of 20% 
to under the breakpoint or elimination threshold of 0.5 Mf % in the case of culicine filariasis, the 
corresponding duration of annual mass treatments in the case of anopheline filariasis to reach 
the elimination target of 1.01 Mf % will only be in the region of 6 years. The absolute number of 
annual mass treatments required will be even lower than this for eliminating anopheline filariasis 
compared to filariasis transmitted by culicine vectors when the precontrol community infection 
levels are lower than a prevalence of 20% (Fig. 7).

Conclusion
A recurring theme in this volume is the potential complexity occurring in the transmission 

dynamics of parasitic infections, the key processes of which require careful elaboration from data 
and the impact of which needs the development of suitable models that are able to incorporate and 
address interactions between such processes. In this chapter, we have illustrated the importance of 
both these requirements for investigating a long-standing topic in the transmission of lymphatic 
filariasis, viz. the impact that vector-specific larval infection dynamics can have on the overall trans-
mission dynamics of this macroparasitic disease. This has not only allowed us for the first time to 
successfully derive and analyze dynamic deterministic models for describing filariasis transmission 
by the two major mosquito vectors implicated in the transmission of this disease, viz. culicine and 
anoheline mosquitoes respectively; it has also enabled the first reliable study of the differential 
impact that having one or the other of these mosquitoes as the dominant transmitting vector can 
have on overall filariasis transmission dynamics and parasite control in host populations.
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Figure 7. Annual changes in overall community Mf prevalence (scaled to 1 ml blood sampling 
volume) as predicted by the deterministic models for (A) culicine and (B) anopheline filari-
asis transmission following an annual intervention program with the DEC/ALB drug regimen. 
Predictions in terms of the number of annual cycles of treatment required to reach endpoints 
of 0.5% Mf prevalence for culicine (horizontal dashed line in (A)) and 1.0% Mf prevalence for 
anopheline filariasis (horizontal dashed line in (B)) are shown for a treatment coverage 80% 
for various baseline community Mf infection prevalences. All figures are given at the scale 
of 1 ml blood sampling volume. Drug efficacy values are as follows: percentage worm kill 
(55%), percentage Mf cured (95%) and months Mf reduced (6 months).34
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The key technical progress we were able to achieve in this work include (1) the successful 
specification and estimation of the “limitation” and “facilitation” functions acting to regulate larval 
uptake and development in culicine and anopheline vectors respectively and (2) the efficient incor-
poration of these contrasting negative (“limitation”) and positive (“facilitation”) density-dependent 
functions into existing basic models that contain the other major within-host density-dependent 
factors acting to regulate adult worm infection for describing the transmission of filariasis in host 
populations. This has thus allowed us to satisfactorily resolve a long-standing methodological 
gap that has impeded quantifying the heterogeneous effect of vector-specific density-dependent 
processes on overall filariasis transmission and control, viz. the effective modelling of the simul-
taneous effects of the major density-dependent mechanisms acting on infection at various points 
or stages of the parasite life-cycle.

The results from the analyses of these new models have clearly demonstrated the consider-
able effect that vector-related diversity in larval infection dynamics can have on filarial system 
dynamics, worm infection patterns and the dynamics of parasite control in host populations 
due to repeated mass chemotherapy. The fundamental result that emerges is that this differential 
vector-related impact is primarily due to variations occurring between each vector-parasite-host 
combination in the presence and number of positive density-dependent mechanisms regulat-
ing parasite numbers at different points in the life cycle. Our analysis of the parasite system 
dynamics indicate that while in culicine filariasis, in which only one positive density-dependent 
mechanism—the adult worm mating probability—is likely to operate significantly, relatively low 
infection thresholds may exist, such thresholds may be significantly higher in the case of anoph-
eline filariasis chiefly as a result of the occurrence of at least two positive density-dependences, 
one facilitating larval output in the vector and the other governing the mating probability of 
adult worms in the host. Indeed, we show that not only may this difference in the number of 
positive density-dependences between the two vector-parasite systems have a differential impact 
on parasite extinction thresholds, but also that possibly as a result of the weaker effect of mat-
ing probability (as opposed to the combined effect of the multiple positive density-dependent 
factors acting in anopheline filariasis) compared to a comparatively stronger negative effect 
of acquired immunity, culicine filariasis may be more resilient to control perturbations than 
anopheline filariasis (see Fig. 3). We show that this is essentially an outcome of both the likely 
occurrence of a larger extent of endemic infection relative to the worm elimination threshold 
and the action of strong negative density-dependent feedback mechanisms—which by causing 
state variables to return towards their original values can produce greater stability in parasite 
transmission—occurring in the culicine system. Similarly, another important finding of relevance 
to enhancing parasite control or eradication and sustaining such states is that while hysteresis 
dynamics, whereby infection emergence and elimination may occur at different points along 
the vector biting rate (Fig. 5), could occur for both culicine and anopheline filariasis, the vector 
biting range over which these dynamics may occur would be longer for the latter filarial system 
making including vector control into intervention strategies to maintain the controlled state 
more important for this system compared to the culicine case.15

Our modelling of the impact that culicine and anopheline vector-specific infection dynamics 
could have on filariasis control by annual mass chemotherapy with the combined DEC/ALB drug 
regimen, a key antifilariasis intervention, has supported previous more empirically-dependent 
conclusions that anopheline filariasis may be easier to eradicate compared to culicine filariasis. 
However, our analysis based on the explicit vector-specific filariasis transmission models described 
here, has revealed that the greater effect of this control method in achieving the elimination of 
anopheline filariasis is due to both the likely higher worm breakpoint or elimination threshold that 
may exist for this system as well as the steeper fall in infection expected over time with repeated 
mass treatments as infection levels in the community fall. We have shown here that this steeper 
fall in particular is an outcome of the lower output of L3 larvae expected with low Mf burdens as 
a result of the operation of the facilitation function governing larval uptake and development in 
these mosquitoes. However, it is important to recognize that while these results apply for a given 



29Vector Transmission Heterogeneity and the Population Dynamics and Control of Lymphatic Filariasis

precontrol infection level, in reality the actual overall duration of required mass treatments in 
anopheline areas compared to Culex transmission areas will depend crucially on the prevailing 
levels of infection prevalence observed between the two areas. In particular, if on average higher 
levels of infection are likely to be generated and observed in Anopheles areas (as a result of higher 
L3 ouput facilitated in anopheline mosquitoes (Fig. 6)), then it is possible that despite the faster 
rate of decline induced on infection by mass chemotherapy, the higher precontrol levels observed 
for anopheline filariasis would make the overall duration of treatments required for achieving 
parasite elimination for this system to be similar to that required in a Culex region. This result 
indicates that a careful consideration of both transmission and control dynamics due to vector 
infection heterogeneity needs to be taken into account when calculating the desired magnitude 
of control required to eliminate either filariasis.

Although the present work has demonstrated how addressing vector-specific transmission dy-
namics via the derivation and analysis of appropriate mathematical models incorporating infection 
processes in both specific vectors and in the human host can aide the dissection of the complex 
nature of the transmission and control of filarial disease, the results have also indicated several 
lines of future research. First, it is clear that a more complete investigation of parasite transmission 
dynamics will require an examination of how stochastic effects influencing transmission processes 
would affect the findings presented here.38 40 We believe that the dynamical aspects of the current 
results would still hold broadly in a stochastic context but a quantification of the probabilities 
associated with extinction events—calculated by examining the outcomes of a large ensemble of 
model runs—would, however, perhaps be more realistic in guiding control programme design and 
management. Second, our research has also highlighted the crucial need for improved detection and 
determination of parameter values for all relevant components and processes occurring in parasite 
transmission ecology, especially those associated critically with density-dependent mechanisms 
governing infection transmission in different host-parasite-vector systems, if we are to more fully 
understand the stability, resilience and extinction dynamics of parasitic systems. In particular, we 
indicate here a critical need to identify and quantify more reliable mating probability functions 
for macroparasites, perhaps via the application of novel molecular ecological tools to parasite 
samples in order to reveal patterns in worm mating behaviours.41,42 We also indicate a pressing need 
to identify and quantify the effects of other possible positive density-dependent mechanisms that 
may mediate filariasis transmission, such as the role that infection tolerance processes could play 
in regulating infection at high vector biting rates.13,43 Although our focus here was on clarifying 
the dynamics and control of lymphatic filarial infection, we further also suggest that similar stud-
ies will play important roles in improving fundamental understanding of the invasion, growth, 
persistence and extinction dynamics of other parasitic diseases. Given the current global interest 
to achieve the eradication of helminth infections, it is clear that undertaking realistic parasite 
transmission model development and analyses, particularly from the perspective of quantifying 
the impact of complex population dynamics, in close conjunction with empirical studies has now 
become a pressing research priority in quantitative parasitology.
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Modelling Multi-Species Parasite 
Transmission
Andrea Pugliese*

Abstract

Some models are presented for the dynamics of a host population with two parasite species. 
The models differ in two main aspects: whether they include direct competition among 
parasites and whether the analysis is based on some approximation and which one. If the 

analysis is not constrained by a priori assumptions about parasite distributions, it is found that 
species coexistence is very unlikely without some kind of direct competition among parasites; 
on the other hand, coexistence generally occurs when inter-specific competition is lower than 
intraspecific, similarly to standard theory for free-living species. If hosts differ in their predis-
position to infection, but not in an identical way towards the two parasite species, then species 
coexistence becomes feasible even if inter-specific competition is as strong as intraspecific; in this 
case, coexistence becomes easier as the variance in predisposition increases. These models do not 
yield universal predictions for patterns of parasite distributions; an analysis of the mechanisms 
of interaction in each specific system is necessary for that.

Introduction
Models for host-macroparasite interaction have a relatively long history, starting from the 

pioneering work of Kostizin1 and with the two seminal papers by Anderson and May2 making 
a strong impact also on empirical research.3,4 On the other hand, very few authors have studied 
models with several species of parasites, despite the fact that parasite communities are routinely 
found and examined in empirical research. This is presumably due to the much higher complexity 
of the resulting mathematical models (see below) and the difficulties in extending to multi-species 
the approach (approximation via the negative binomial assumption) that has been so fruitful in 
the analysis of single species models.

None the less, several interesting models have been developed over the years. In this chapter, I 
will give a personal review of the subject, mainly focused on the subject of coexistence: what are 
the factors that lead to species coexistence? In so doing, I will quickly review some examples of 
dynamic models for two parasite species competition. In the final section, I briefly discuss whether 
these models give any general insights to understanding for parasite community ecology.

The models studied assume that parasites have only one host (i.e., they are monoxenic) and 
that infections occur through free-living larvae. I believe that most results would apply to more 
complex systems as well.

Simple Models for Multispecies Parasite Dynamics
The main difficulty in modelling parasite dynamics is that one cannot simply divide the host 

population into infected and not, but one has to describe and predict the distribution of para-
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sites among hosts, since the effect of parasites on hosts and on other parasite species depend on 
the number present in that host and perhaps also in features of their establishment. The typical 
approach used in one-species macroparasite models has been to choose a priori that the parasite 
distribution is negative binomial, generally (following Anderson and May2) with fixed aggrega-
tion parameter k, but also with a varying aggregation parameter5,6 and to then obtain an equation 
for the temporal dynamics of the mean parasite burden and, depending on the model, of other 
variables, such as host and/or free-living larvae density.

To my knowledge, the first model on two macroparasite species interacting with one host 
species has been proposed by Dobson.7 His model followed this approach, assuming that each 
parasite species follows the negative binomial distribution with fixed aggregation parameter (k1 
and k2) and that the two distributions are independent; he then derived a model for the dynamics 
of the two parasite densities, assuming that the two species (and indeed all individual parasites) 
do not interact except in that each parasite contributes to the death of a host harboring both spe-
cies. His main result is that there is an ample parameter region in which both species will coexist: 
the smaller the parameters ki are (meaning the more aggregated their distributions), the larger the 
coexistence region will be.

That model has been extended to communities of parasites,8 to allow for interference or fa-
cilitation between parasites9,10 and to allow for logistic host growth.11 The result about parasite 
coexistence has proved to be robust with respect to all these changes.

Even two species identical in all parameters and differing in just one (for instance, the rate 
of egg production) can coexist; thus a completely inferior competitor (the one with a lower egg 
production) can survive. This result is actually rather puzzling and seems to be in contrast with all 
the theory of competitive exclusion.12 Competition theory does allow for several species to coexist 
on a single resource, for instance because of competitive balance shifts along a temporal cycle, or 
because of a colonization-competition trade-off in a metapopulation setting. In all cases, coexistence 
of competitors seems always to require the existence of some trade-off between traits.

The problem seems to lie in the a priori assumptions made. It will be addressed here by examin-
ing conditions for coexistence in a model based only on explicit assumptions about the interaction 
mechanisms.

Structure and Parameters of Models
The models analyzed here concern the interaction of a host population with two species of 

monoxenic parasites with infections occuring through free-living larvae. In contrast to the models 
outlined in the previous section, the model considered here does not contain a priori assumptions 
about parasite distributions and allows for many types of competition among parasites in the same 
host. The model is deterministic, with main variables the density of hosts carrying i 1-parasites 
and j 2-parasites, denoted as pij(t). Other authors13,14 start from a stochastic model, but then, to 
obtain analytic results, use some approximations leading to so-called hybrid models15 similar to 
those discussed here.

The system of differential equations satisfied by pij(t) is rather cumbersome and can easily be 
obtained with some book-keeping: it is written explicitly in the Appendix. It can be derived by 
noting that pij(t) may increase because some hosts that were carrying a different number of parasites 
switch to having exactly i 1-parasites and j 2-parasites (p00(t) increases also because of new births) 
and vice versa may decrease because some hosts carrying i 1-parasites and j 2-parasites switch to 
a different number of parasites (or die). Listing the possible transitions and their rates, as in the 
following Table 1, is then enough to specify the system.

In words, it is assumed here that adult parasites affect (additively) hosts’ mortality and (mul-
tiplicatively) hosts’ fertility. Moreover, parasites within a host interact directly by increasing (ad-
ditively) the mortalities (according to the matrix � that differentiates intraspecies and inter-species 
effects), decreasing (multiplicatively) the fertilities (according to the matrix r) and decreasing the 
probability of establishment of an infecting larva (through the matrix �). Finally, new infections 
occur through encounters (at rate �) with free-living larvae.
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The dynamics of free-living larvae has to be specified; new ones are produced from adult para-
sites (see Table 1), while they are removed through deaths (at rate �� [or ��]) or encounters with 
hosts. One has then the differential equation
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dt
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and analogously for L2. A usual simplification2 is the assumption of fast dynamics of larvae, so that 
they are at quasi-equilibrium with adult parasites. From (1), one obtains
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Finally, substituting (2) in the expression (Table 1) for the rate of adult parasite establishment, 
one obtains that, for a host carrying i 1-parasites and j 2-parasites, this is equal to
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In the transitions listed, several relevant phenomena of host-parasite interactions have been 
neglected, such as nonlinear effects of parasite abundance on host mortality, facilitation of parasite 
establishment through parasite-caused impairment of immune response,16 context-dependent 
(through the sequence of infection by different species) parasite competition.17 The system is already 
complicated enough as it is and indeed it will be simplified to allow analysis; moreover, the main 
interest of the chapter lies in parasite competition rather than in facilitation.

The resulting system of differential equations is clearly very difficult to study, not least for 
its size: since the number of adult parasites in a host, i and j, can in principle be any number, it 
is a doubly infinite system; even if we restrict these numbers to a maximum, say 100, we would 
still have a system of 10,000 differential equations. The idea of simplifying the system by some 
kind of moment closure, either through a negative binomial assumption,7 or through a normal 
approximation,14 is clearly very appealing, although it is then necessary to understand whether 
the results are an artifact of the approximation.

A different approach is to limit the study to the computation of the invasion criteria for each 
species; these are sometimes possible to compute without any approximation.18 In this way it is 
not possible to infer the overall dynamics of the system, but at least one can compute exactly the 
parameter region that allow for species coexistence.

Invasion Criteria
While analyzing the dynamics of a complex nonlinear model, such as that including hosts and 

two parasite species is very difficult, it is often possible to study the (linearized) dynamics close to an 
equilibrium. In particular, the computation of the invasion coefficient (i.e., the growth rate of one 
parasite species in a population close to the equilibrium where hosts coexist with a first population 
species) is sometimes feasible. Basically, this is an extension of the basic reproduction ratio (R0) 
of a parasite in a parasite-free population, a quantity fundamental in models for microparasites,19 
but that can be adapted for macroparasites as well.11,20

In some cases it is then possible to characterize a quantity R1
2 representing the basic reproductive 

ratio of parasite 2 invading a population at the equilibrium E1 where hosts coexist with parasite 1. 
If R2

1, the population of parasite 2 is able to initially increase and will establish itself; on the other 
hand, if R1

2, that population will decrease and will eventually get extinct.
Coexistence will be deemed to occur when both R1

2 and R2
1  are greater than 1, i.e. when each 

parasite species is able to invade an equilibrium with only the other species present, together with 
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the host. This principle is well established in theoretical population biology and can be justified, 
under some technical assumptions, through persistence theory.21 One could extend the same 
principle to more than 2 species, through the computation of the invasion coefficient of parasite 
species n into an equilibrium with the first n - 1 present; however, this is generally very difficult 
because it requires finding explicitly an equilibrium with more than 1 parasite species.

Generally the basic reproduction ratio R1
2 can be defined of the average number of established 

adult 2 parasites produced by a newly established parasite 2 during its expected life time.18,20 We 
can split this number in at least three components:

    

R average number of larvae produced over an adu1
2 = ( llt parasite life time

probability that larva i
)

(� s ingested by ahost probability of a successfu) (� l establishment)  (4)

All these quantities will depend, according to the model used, on the features of the equilibrium 
E1 since parasite survival and fertility may depend on how many 1 parasites are present in the 
same host (and perhaps also on host density); the probability that a larva is ingested by a host will 
depend on host density; the probability of a successful establishment may depend on host immune 
response, hence on the burden (as a surrogate of the host’s previous exposure) of 1 parasites.

The Model without Direct Interactions
This has been the case mainly analyzed in the literature, mainly because it is the simplest, so that 

it can also serve as a reference for studying the effect of direct interactions. All the terms in Table 
1 referring to parasite interactions, the matrices �, r and τ are set equal to 0 after tau.

Pugliese18 computes the invasion coefficient for that case. As discussed above, this requires to 
obtain some features of the equilibrium with only 1 parasite species present and then to compute 
the component of formula (4) for the basic reproductive ratio R1

2. 
Without repeating the technical steps presented there, we sketch the main ideas. First of all, 

at an equilibrium, if parasite interactions are neglected, the probability distribution of parasite 
burden follows some simple law, depending on hosts’ age: precisely, if parasite infections occur 
one at the time and hosts do not differ in their resistance to infection, parasite distribution for 
each age is Poisson22 with mean
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where � and � are parasite mortality and parasite-induced host mortality (see Table 1) and ϕ is the 
equilibrium level of the parasite establishment rate (see Eqn. 3). Alternatively (generally data do not 
support the assumption of a Poisson distribution of parasite load, even when accounting for host’s 
age23,24), one can allow for multiple infections or heterogeneity in hosts’ susceptibility to infection, 
obtaining mixtures of Poisson with levels of aggregation comparable to observed ones.22

One can then compute the components of (4). Since γij � 0, the probability of a successful estab-
lishment is equal to �1. Since larvae may either die (at rate �) or be ingested by hosts (at rate �N), 
the probability of being ingested is �

� �
N
N

N
c N� ��  with c � ��� (see Eqn. 3) and N is host population 

size at equilibrium; when the equilibrium includes parasite species 1, this will be denoted as N1.
The only part of (4) that requires lengthy computations is the average number of larvae pro-

duced over an adult parasite life time. First of all, one notes that in this model (rij � 0), fertility is 
constant (h2); then one has
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where T1
2 represents the expected lifetime of a 2-parasite that has just infected an average host in a 

population at the equilibrium E1 where hosts coexist with 1-parasites. This can be computed as the 
average of the expected lifetime of a 2-parasite establishing itself in a host of a given age and parasite 



37Modelling Multi-Species Parasite Transmission

burden; the average will be weighed using the probability N s N1 1( )/  of surviving to age s, (according 
to the stationary age density) and the Poisson assumption with (5) as its mean, or the somewhat more 
complicated distributions following from multiple infections, for heterogeneous hosts.

From the Poisson assumption, one obtains, after some algebra,
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Formula (7) shows that the reproduction ratio of parasite 2 increases with its fertility (h2), with 
its probability of establishment (��), decreases with larval death rate (�� through the parameter 
c2), with its adult death rate (��) and its induced host death rate (��). All this is rather intuitive 
and would not require modelling.

More interesting is the transformation of (7) into an expression containing the corresponding 
parameters for parasite 1; the expression is particularly simple if c1 � c2, which means that the pa-
rameters relative to the larval stages are the same for the two parasite species. One then obtains
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where �1( )s  represents the probability of surviving to age s, at the equilibrium E1 of coexistence 
with parasite 1.

Formula (8) shows clearly a principle: a parasite that is superior to the resident one (higher 
fertility and lower death rate and induced host death rate) will always be able to invade and will 
never be invaded by the other. Mutual invasibility can occur only if there exists a trade-off between 
traits, namely one parasite has a higher fertility (say h2 ��h1), but suffers also from a higher mortal-
ity or higher damages caused to its host (�� � ������� � ��). When a trade-off occurs, Pugliese18 
shows that coexistence is possible but only when the parameters are very precisely balanced: for 
given values of �� � ������� � ��, there exists a very narrow interval of values h2 (with h2 ��h1) that 
gives rise to coexistence.

This conclusion is in strong contrast with that obtained by Dobson7 and others,9-11 that para-
site coexistence is easy and is especially facilitated by aggregation in parasite distribution. Given 
that the model with single infections and homogeneous hosts gives rise to very little aggregation 
(which is caused by the mixture of Poisson with different mean, because of hosts’ age), it may be 
not surprising that coexistence is very unlikely in this model.

In Pugliese18 the issue was tackled by analyzing models including mechanisms that built more 
aggregation into parasite distributions. Precisely, two models were analyzed: one with multiple 
infections of larvae (with a Poisson distribution of mean �), the other with heterogeneity in hosts’ 
susceptibility to infection, i.e., � is not constant among hosts, but has a distribution with means 
�1 and � 2 for the two parasite species.

In both models, the invasion coefficient can be computed from (4) along lines similar to those 
leading to (7) and (8). The computations are more involved and are not reported here. Eventually, 
one arrives at an expression of the type
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where the function F depends on all details of the model, but has two fundamental properties:
 a. F equals 1 if all parameters are the same (F(�, �, �, �) � 1), which means that if two parasite 

species differ only in their fertility, the one with higher fertility outcompetes the other;
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 b. F is decreasing with �� and �� (the reproductive ratio decreases, if a parasite suffers higher 
mortality, or induces a higher death rate on the host) and is increasing with �� and �� (it 
is easier for a parasite to invade, if the resident parasite suffers higher mortality, or induces 
a higher death rate on the host).

These two properties imply that a trade-off between fertility, on the one hand and parasite- or 
host-induced mortality, on the other hand, is necessary for two parasites to coexist.

The coexistence region could be examined only by numerically computing the function F in 
(9). It was found (see Fig. 1) that the width of the coexistence region was basically independent 
of the degree of aggregation induced by the model: one could assume a very large heterogeneity 
in host susceptibility and thus a very aggregated parasite distribution, but still the potential for 
parasite coexistence was very limited, basically the same as with homogeneous hosts and little 
aggregation.

The rationale for the difference in this result from what obtained by Dobson is discussed 
at length in Pugliese.18 Basically, Dobson7 assumes that parasite distributions are aggregated 
and independent. On the other hand, if aggregation arises from the fact that some hosts are 
more susceptible to infection (from whichever parasite species), it is clear that both species of 
parasites will be found in the most susceptible hosts, so that parasite distribution will be posi-
tively correlated; the stronger is host heterogeneity (and thus parasite aggregation), the more 
positive the correlation will be. Indeed, Dobson and Roberts,9 studying a negative binomial 
approximation with fixed correlation coefficient, show that positive correlation coefficients 
hinder coexistence.

Clearly, things would be different if some hosts were more susceptible to parasites of species 
1 and others to parasites of species 2; this is explored in references 13-14 (see below), but it is a 
different explanation: coexistence arises because of differential host susceptibility, not because 
of aggregation per se.

Figure 1. The values of h2 as a function of the coefficient of variation in host susceptibility 
to parasites for which a second parasite species could coexist with a first parasite species. 
Other parameter values are �� � 5, �� � 0.5, �1 � �2 � 2, h1 � 65, C1 � C2 � 1, d = 0.5, b � 1, K 
� 1000. Figure adapted from Theoretical Population Biology, vol. 57, pp. 145-165, Figure 6, 
© 2000 Elsevier, with permission.
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Competition among Parasites
The results obtained in the previous section are very elegant mathematically, providing a subtle 

reason for coexistence among parasites without direct interactions: the shift in the age-dependence 
of host mortality when at equilibrium with either parasite species. On the other hand, they are 
somewhat disconcerting biologically, because coexistence is very unlikely, while routinely parasites 
of several species are found in the same host populations and individuals.25 Moreover, it refers to 
any kind of parasites: even parasites colonizing different organs could coexist only under very 
restrictive conditions, which seems plain nonsense.

The point is that in the model the only density-dependence mechanism, that keeps parasite 
load from growing to infinity, is the induced host mortality. Hence, parasite density at equilibrium 
will be at a sufficient high level to overall induce a significant host mortality. In turn, the high level 
of host mortality will make it very difficult for a second parasite species to invade, unless it has a 
higher reproduction number than the resident one and then displaces it.

In short, to make a realistic multiparasite model, it is essential to introduce competition between 
parasites, whether they are of the same species or of different ones. In Table 1, three levels of competi-
tion are considered, translated as rates depending on the number of parasites in a host: parasite mortal-
ity will increase, while parasite fertility and probability of successful establishment will decrease.

Empirical evidence exist for all these facts;26,27 the number of parasites in a host may be relevant 
because of its impact on host resources available for other parasites, or because of the immune 
response induced in the host; in the latter case, it might be better modelling immune response, 
as depending on the history of infection of individual hosts,28 rather than on the current parasite 
load, but this would be rather more complex and current parasite load may be a reasonable proxy 
for history of infection.

Explicit mechanisms of parasite competition have been introduced in models for competition 
between two parasite species by Bottomley et al,13,14 using the methods developed by Isham and 
coworkers.22,29 They consider separately the effect of parasite load on probability of establishment 
and on parasite fertility; here I consider the same cases, neglecting the effect on parasite mortal-
ity, mainly because of the mathematical complications of this. First, I use the same approach as in 
previous Section, that leads to an exact computation of the invasion coefficient, hence to finding 
the conditions for coexistence as mutual invasibility, only for the case of competition acting on 
parasite fertility. Then, I show the approach by Bottomley et al13,14 that involves the computation 
of approximate equations for the first two moments of parasite distribution, thus yielding condi-
tions for coexistence but also the dynamic pattern of parasite densities.

Parasite Fertility Depending on Available Resources
Let rij measure the effect of the load of parasite species j on the fertility of parasite species i; 

precisely, I assume (see Table 1) that the fertility of one parasite of species 1, living in a host that 
harbors i parasites of species 1 and j of species 2, is h1(1 �r11)i 1(1 �r12)j. Note that I use a multi-
plicative effect (and not an additive one) of parasites, to avoid the fertility becoming negative at 
high parasites load; as long as i r11 and j r12 are not too large, that expression can be approximated 
as h1(1� �(i� �1) r11  j r12), yielding a more usual expression.

Most of the analysis outlined for the model without direct interactions still applies. One can use 
(4) to find the invasion coefficient for species 2 in a population where the host coexists with species 
1. In the equilibrium with only species 1, equation (5) still holds; in this case, however, the average 
number of larvae produced by an adult parasite is not simply the product of the fertility rate times 
its expected lifetime, because the fertility depends on the number of other parasites present. The 
computations (that will be presented elsewhere) can be performed easily using functional-analytic 
methods.30 The final result can be written as
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or, if c1 � c2, as
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where  � is the rate at which (at equilibrium) new 1-parasites establish themselves (see Eqn. 3), 
while �1( )s  is as in (8).

Expressions (10) and (11), that extend (7) and (8), are rather cumbersome, but one can easily 
use it on a computer to find the parameter values that allow for coexistence, i.e., those for which 
both R1

2 1>  and R2
1 1>  (see Figs. 2 and 3).

Moreover, one can easily understand some particular cases:
if all parameters of the two parameter species are identical, then R1

2 1= ; hence, if r21 ! r11 (i.e., 
interspecific is lower than intraspecific competition), . One then obtains in this context the 
classical result that two competing species that have the same demographic parameters but use 
somewhat different resources can always coexist.

In the extreme case where r21 � 0 (i.e., the presence of species 1 has no effect on parasites of 
species 2) and �� � 0 (hence population density is at its carrying capacity, K, independently of the 
presence of parasites), expression (10) simplifies to
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where L is the average length of host life. In this case, R1
2 1>  is simply the condition for species 2 

to be able to persist with the host at its carrying capacity. Then two species that do not interact and 
do not increase host mortality can always coexist, provided each can persist with the host.

Figure 2. The region in the parameter space (r21 � r12, h2/h1) that allows species coexistence 
(to the left of the chevron-shaped curves) for �� � �� � 0 (solid curve) or �� � �� � 0.1 (dashed 
curve). Other parameter values are r11 � r22 � 0.8, �� � �� � 2, h� � 4, C� � C� � 1, d � 0.5, b � 1, 
K � 1000.
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Generally, if �� � 0, computations are easier, since the presence of parasites does not affect host 
demography. Then (10) can be written as
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Figure 2 shows how the coexistence region depends on the ratios of parasite fertilities and the 
strength of their interspecific competition. In the figure, the two parasite species have the same 
value of all parameters except the fertility hi and have a common inter-specific competition coef-
ficient r21 � r12. It can be seen that, when inter-specific competition is very low, the two species 
will coexist for almost all feasible fertility values; on the other hand, the ratio of fertilities must 
become very close to 1 for the two species to coexist, as the inter-specific competition coefficient 
approaches 0.8, the value of the intraspecific competition coefficient. When r21 � r12 � r11 � r22, 
coexistence is impossible, as seen in Figure 2 and shown by (11). It can also be seen from Figure 
2 that the coexistence regions are similar for �� � 0 and �� � 0.1 (a rather strong parasite-induced 
mortality, comparing with the other parameter values).

Figure 2 compares parasite species differing in only one demographic parameter; in Figure 3, 
the case of a trade-off between fertility and parasite-induced mortality is analyzed, as in ref. 18. 
One can again see the strong influence of the interspecific competition coefficient r12 � r21 on the 
width of the coexistence region, although coexistence becomes anyway more difficult when the 
competitor is extremely lethal.

The trade-off between fertility and parasite-induced mortality was shown18 to be sufficient for 
species coexistence, in absence of intra- or inter-specific competition, although the rates had to be 
balanced very carefully. One may wonder whether this can happen also with inter-specific com-
petition equal to the intraspecific one. However, repeating the computations shown in Figure 3 
with r12 � r21 � r11 � r22 � 0.8, one sees that coexistence is impossible for any values of �� or h2/h1. 
Vice versa, one finds a region where both R1

2 1<  and R2
1 1< , i.e., both monospecific equilibria 

are uninvadable. Namely, a (narrow) parameter region may exist where, even if inter-specific 

Figure 3. The region in the parameter space (�2, h2/h1) that allows species coexistence (between 
the curves) for r12 � r21 � 0.5 (solid curve) or r12 � r21 � 0 (dotted curve). Other parameter values 
are r11 � r22 � 0.8, a1 � 0, �1 � �2 � 2, h1 � 4, C1 � C2 � 1, d � 0.5, b � 1, K � 1000.
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competition is exactly equal to intraspecific one (and could even be slightly lower), the system 
exhibits competitive exclusion dependent on initial densities, as it happens for Lotka-Volterra 
systems when inter-specific competition is higher than the intraspecific one.

In Figure 4, two contrasting examples are shown of simulations with inter-specific competi-
tion exactly equal to intraspecific one; in the left panel, competition is rather strong (r11 � r22 � 
r12 � r21 � 0.5) and values of �i and hi have been found, for which both exclusion equilibria are 
attractive, as discussed above; in the right panel, competition is very low (r11 � r22 � r12 � r21 � 
0.01) and values of �i and hi have been found that allow for species coexistence, like in the case 
without competition.

The simulations in the left panel of Figure 4 show a very simple behavior, typical of two-di-
mensional Lotka-Volterra competition systems: fast convergence to a one-dimensional manifold 
connecting the equilibria and then slow convergence to an equilibrium, along the manifold. In 
this case then parasite competition follows the standard patterns of competition theory and it 
becomes reasonable the search for some simple approximating system.

In the simulation shown in the right panel of Figure 4, after some initial oscillations host 
population and parasite loads approach a stable coexistence equilibrium. It may be noted that the 
population density reached (around 4) is extremely lower than the carrying capacity (1,000); this 
is not meant to be realistic and is due to the choice of very high induced mortalities and the very 
low level of parasite competition.

The previous analysis can be applied, in a relatively simple way, when parasite resource compe-
tition affects only parasite birth rate. Judging from preliminary simulations, it seems likely, that 
similar results will hold also when parasite competition increases death rates (through parameters 
r of Table 1) or decreases establishment probability (through parameters � of Table 1). The com-
putations outlined in this Section do not easily extend however, since parasite distribution will 
not be Poisson for fixed age (as in (5)), so that no explicit formulae can be found, although the 
ideas of invasion criteria still apply.

Instead, normal approximations can be obtained,14 as shown in the following Section.

Normal Approximations
Bottomley et al13,14 have studied parasite competition through normal approximations. The 

idea is very simple: from the equations in the variables pij, or directly from computations of the 

Figure 4. Simulations of the system in the variables pij, with equal inter-specific and intraspecific 
competition coefficients. In the left panel, parameter values are r11 � r22 � r12 � r21 � 0.5, �� � 
0.1, �� � 0.5, �� � �� � 2, h� � 4, h� � 4.55, C� � C� � 1, d � 0.5, b � 1, K � 1000. Axes represent 
average parasite loads, X1 � �i, j ipij/N and X2 � �i, j jpij/N. The solid line shows a simulation 
starting from (0.55, 0.45), the dotted line one starting from (0.25, 0.75). In both cases N(0) � 
800. In the right panel, parameter values are the same except r11 � r22 � r12 � r21 � 0.01, h2 � 
4.492. On the x-axis, time; on the y-axis, host population density (scale on the left) N � �i, j pij 
and average parasite loads (scale on the right) X1 and X2.
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possible instantaneous changes in parasite load, one can find equations satisfied by the first mo-
ments of the parasite distributions (means, variances, covariances...). Unfortunately, as usual in 
most complex models in ecology, the equations for lower moments have terms including higher 
moments; to obtain a closed low-dimensional system, one then needs some form of “moment 
closure”.31 A simple approach is the normal approximation,22 i.e., to assume that higher moments 
can be expressed in terms of the first and second moments, according to the same relations that 
hold for a normal distribution. The assumption may not seem very adequate for parasites, since 
normal distributions are continuous and include a negative part; the negative binomial distribution 
used since Anderson and May2 does not have these problems, but cannot be easily generalized to 
two or more variables;10 moreover, Bottomley et al14 show, through simulations, that the normal 
approximations works reasonably well, as long as parameter values are not extreme.

The use of the normal approximation requires a correction in the laws used for density-depen-
dence. Precisely, it becomes more convenient assuming that parasite fertility decreases with the 
number of parasites according to an additive law h1(1  (i 1)r11  jr12) and similarly the probabil-
ity of establishment is ��(1  i���  j�12). For the rule to be reasonable, it should be assumed that 
fertilities (or probability of establishment) are 0 when the quantities are negative. The following 
analysis is feasible only without that restriction; however, as long as the parameters r and � are not 
too large, ignoring the restriction does not make a big difference.14

The equation (1) for the larvae still hold, together with the quasi equilibrium approximation 
(2) that, with the change to the additive law, changes (3) into
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where xi is the i-parasite load and ! � represents the average.
It is also easy writing an equation for the total host density N
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One can then write equations for !xi� obtaining
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Competition at Establishment. No Induced Mortality
In the case where the parasites do not induce mortality (�i � 0) and parasite competition acts 

only by reducing the probability of establishment (rij � �ij � 0), equations (14) become a closed 
system. In fact, N is then fixed at the carrying capacity K with b(K) � d and (14) reduces (dropping 
for ease of notation the brackets) to

  

(15)

Equations (15) have exactly the form of a Lotka-Volterra competition system. Hence, according 
to the values of the coefficients, one can have the four possible outcomes: equilibrium coexistence 
of the two species, competitive exclusion of species 1, competitive exclusion of species 2, contingent 
competitive exclusion (either species may be excluded depending on initial densities).
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First of all, it is necessary to assume that each parasite species alone is able to persist with the 
hosts at the carrying capacity K. This condition can be written in terms of basic reproductive 
numbers as
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Then, the conditions for coexistence are
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In case R0
1 and R0

2 are much larger than 1, conditions (17) simply mean that inter-specific 
competition is lower than intraspecific one.

If both conditions are reversed (intraspecific competition lower than inter-specific one), one 
obtains contingent competitive exclusion.

Finally, if one of (17) holds and the other not, strict competitive exclusion of one species 
occurs.

Note that, while (15) are obtained from (14) without approximations, still they are not exact 
for the complete system because they have been derived neglecting the constraints (see above) that 
only the positive values of h1(1  (i �1)r11 �jr12) and ��(1 �i���� �j���) had to be considered.

Competition Acting on Parasite Fertility
One has to add equations for the second moments, since they appear in right hand sides of 

(14) unless rij � 0.
Using as variables the variances and covariance (V x x1 1

2
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C x x x x12 1 2 1 2� �< >  < >< >  ), one obtains, after some lengthy calculations, equations satisfied by 
them, involving the third moments. The normal approximation allows to write the third moments 
in terms of the first two, using the relation

 < > = < >< > + < >< > + < >< > – 2< ><UVW UV W UW V VW U U        V W>< >  (18)

exact if (U, V, W) follows a multivariate normal distribution.
The expressions in the general model are very complex and add little insight, though they could 

be used for numerical computation. I restrict to the case of competition acting only on parasite 
fertility, the case analyzed above through invasion coefficient and also studied13,14 through normal 
approximations.

First of all,  � and  � are given by (12) that is rewritten now, using V1, V2 and C12 as
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and analogously for  �. Then equations (14) can be rewritten for this case as

  
(20)

Finally, writing the equations for the second moments and applying also (18), one obtains:

 
�V V V1 1 1 1 1 2 1

2
2 1 1

2       (2     )      (� � � � � �� � �X X X X ) ( )b N
 (21)

 
� �� � � � �C C C C12 1 2 12 1 1 12 1 2 2 2 12( )   ( )     (� � � �X X X X �� � �X X X X b1 2 12 1 2) ( ) ( )C N

 (22)

Equations (13)  (20)  (21)  (22) (with the analogous ones for x2 and V2) are a closed system 
describing parasite competition. One can use them to find the equilibrium with only one species 
present and then find the invasion conditions for the second species; mutual invasibility could 
then be considered as denoting coexistence. Unfortunately, analytical computations are still rather 
difficult and it is generally necessary to resort to numerical computations.
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The normal approximation works effectively only when host death rates are small.14 In the 
limiting case where �� � �� � 0 and also b(N) � d, at equilibrium x1 � V1 and C12 � 0; then, using 
these relations in (20), the equations for x1 and x2 take the Lotka-Volterra form (15) and one can 
easily analyze them.

One can also compare numerically system (13)  (20)  (21)  (22) with the exact system 
presented in the Appendix; two examples of this comparison are shown in Figures 5 and 6.

From the figures it can be seen, first of all, that, in both cases, simulations converge quickly 
to a coexistence equilibrium (inter-specific competition is half the intraspecific one). Moreover, 
the same qualitative trends exist for both exact and approximate models; increasing host death 
and birth rate (while maintaining all other parameters) results in decreased parasite loads, hence 
in higher host density. Similarly, parasite aggregation and correlation increase with host death 
and birth rate, since in these models parasite aggregation (and correlation) results from the 
hidden variable age: for each given age, parasite distributions are Poisson (no aggregation) and 
independent, but differ in their means; the mixture of these distributions results into a (little) 
aggregated distribution.

On the other hand, the absolute values predicted for parasite loads are rather different, especially 
for the more abundant species (2) and so is host density, since it will suffer from parasite-induced 
mortality. It must be remembered, however, that a multiplicative law for parasite fertility is used 
in the exact model and an additive law in the normal approximation; the latter results in a lower 
fertility when there are at least 3 parasites in a host, so it is no wonder that they yield quantitative 
different results.

Competition and Host Heterogeneity
As can be seen from Figures 5 and 6 (right panels), the previous models yield a very low cor-

relation between parasite distribution and a very low aggregation in each. Then, on the one hand, 
one could feel justified in assuming a priori that parasite distributions are independent; on the 
other hand, it seems necessary to allow for some aggregation in the distributions, to have a model 
closer to reality. The approach by Dobson7 and others11 is to use independent negative binomial 
distributions for each species, or with a fixed correlation coefficient.9,10

Bottomley et al13,14 have instead modeled a mechanism that produces parasite aggregation, 
studying its effects on species coexistence, according to the detailed assumptions used. Precisely, 
they assume that the parameter � (establishment probability) is not a constant, but varies among 

Figure 5. Host density and parasite loads vs time (left panel); correlation between the distribu-
tion of the two species and aggregation (� variance/mean) of each vs time (right panel) in two 
simulations of the infinite system. Simulation “A” has b � 0.2, d � 0.1; simulation “B” has b � 
1, d � 0.5. All other parameter values are the same: r11 � r22 � 0.8, r12 � r21 � 0.4, �� � �� � 0.01, 
�� � �� � 2, h� � 4, h� � 5, C� � C� � 1, K � 1000. Initial conditions are N(0) � 800 and Poisson 
independent distribution for each parasite of means 0.25 and 0.75, respectively.
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hosts according to some given distribution (like in Fig. 1); the equations for the second moments 
will then involve mean and variance of this distribution. Note that, since � is a probability, it must 
lie between 0 and 1, so that its variance cannot be large; however, it is also possible to assume that 
the encounter rates of hosts with larvae (parameter � in Table 1) is variable among hosts; by a 
redefinition of parameters one can include this variation in � and then its variance can take any 
value, as will be assumed here.

If some hosts have a higher predisposition to infection (measured by their value of �), they are 
more likely to get infected, so that a correlation will build up between � and parasite load x. The 
covariance between � and x, C"x will then be a variable of the system.

To keep things simple, I will restrict the analysis to the case where parasites do not induce 
mortality (�i � 0) and parasite competition acts only by reducing the probability of establishment 
(rij � �ij � 0). Then, host population density is fixed at K and equations for parasite loads xi do not 
depend on variances (see (15)).

The resulting competition system will assume given (different distributions) for �� and ��, 
summarized by their means �1 and � 2, variances V1

�  and V2
� and covariance (C""). Variables of 

the system will be parasite loads (x1 and x2) and the covariances between �i and xj (Cij
x� ). Through 

some steps,14 one arrives at the following system of equations
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with analogous equations for x2, C x
21
�  and C x

22
� .

In order to study coexistence in model (23), one can, as discussed above, compute the equilib-
rium Ei with only one species present and find the conditions for invasion from the other species. 
As shown in Bottomley et al,14 this can be written as reproduction numbers
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Figure 6. Host density and parasite loads vs time (left panel); correlation between the dis-
tribution of the two species and aggregation (� variance/mean) of each vs time (right panel) 
in two simulations of the approximating system (13)-(20)-(21)-(22). Simulations “a” and “b”, 
parameters and initial conditions as in Figure 5.
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where all quantities are computed at the equilibrium E1. Moreover, R0
2 and R0

1 are the basic reproduc-
tion number given in (16), using the means of �� and ��, # is the correlation coefficient between 
�� and �� and cvi

�  are the coefficients of variation (� standard deviation/mean) of �i.
The interest of the analysis of this model lies mainly in understanding the role of #, cv1

�  and 
cv2

� . In fact, high values of cv1
�  and cv2

�  correspond to highly aggregated parasite distributions at 
equilibrium; indeed, Dobson7 had found that aggregation promotes parasite coexistence.

One can start the analysis by a simple case: when # � 1, cv1
�= cv2

�
 the conditions for coexistence 

R1
2 1>  and R2

1 1>  become identical to the conditions (17) found without heterogeneity. Hence, when 
there is perfect correlation among hosts between predispositions to each parasite species, a high 
aggregation (as long as it is the same in both species) has no effect on coexistence. This conclusion 
is similar to what found by Pugliese18 in the exact invasion analysis of a model without direct in-
teractions (see Fig. 1). When cv1

�  and cv2
�  are different, the conclusion is not as straightforward; 

one can see that the invasion of a parasite is hampered, if its variation in predisposition is much 
larger than that of the resident parasite, while is facilitated if its much lower; on the whole, still 
aggregation does not promote parasite coexistence.

Decreasing the correlation # among host predisposition to parasites makes coexistence easier; 
this can be seen from (24), since the coefficient of # is negative. Intuitively, it is clear that, if 
some hosts are more predisposed to parasite 1 and others to parasite 2, parasite coexistence 
becomes easier.

Less intuitive is the fact that there is an interaction between the effects of the two parameters. 
When #�!�1 and cv cv1 2

� �� , increasing the coefficients of variations (still keeping cv cv1 2
� �� )

makes it easier satisfying the invasion conditions. This follows indirectly from (24), since higher 
cv1

�  results in lower xi at equilibrium. Hence, in these circumstances the conclusion that aggrega-
tion promotes coexistence may be justified. A quantitative example is shown in Figure 7; it can 
be seen that an imperfect correlation in predisposition (#�!�1) and high coefficients of variation 
allow for the coexistence of parasite species that are identical in all demographic parameters, but 
with inter-specific competition higher than intraspecific one; the effect is not very large, though, 
unless correlation is rather low.

Figure 7. The maximum value of inter-specific competition ��� � ��� that allows for coexistence, 
vs cv cv1 2

� �� . for different values of #. Other parameter values are ��� � ��� � 0.5, �� � �� � 0, 
�� � �� � 2, h� � h� � 15, C� � C� � 1, K � 1000, d � 0.5.
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Conclusion
Several models for parasite competition have been presented. All are rather complex and do 

not allow for an easy analysis. For this reason, only some special cases have been considered in this 
chapter and more extensive analyses would be necessary before drawing clear conclusions. In Table 2 
I present a summary of the models considered and the mechanisms yielding coexistence in each.

Still, it is possible to state some general, though preliminary, results. Parasite coexistence 
generally requires intraspecific competition; if parasite populations are controlled only indirectly 
through their effects on hosts (through mortality or fertility) and do not compete directly for 
host resources, then at equilibrium host density will be severely reduced and parasite coexistence 
would require precise balances of demographic parameters that appear rather unlikely. Such a 
trade-off between parasite fertility and survival (including the host’s) would result in a coexistence 
of metapopulation type, with one species quicker at reaching new hosts and another surviving 
longer on the colonized ones.

On the other hand, if parasite populations are controlled by their competition for host re-
sources, or other types of interactions among them, then coexistence occurs as long as inter-specific 
competition is lower than intraspecific one, following a dynamics reminiscent of Lotka-Volterra 
equations.

A specific feature of host-parasite interactions is host predisposition for infection, that is 
generally considered the most relevant mechanism generating aggregated parasite distributions, 
a feature universally observed in empirical surveys.24 If there exists only a generic predisposition 
for all parasite species, then this has no effects on the feasibility of parasite coexistence. On the 
other hand, if the predisposition to different parasite species differs among hosts, then coexistence 
becomes more likely, as quite obvious intuitively; in this case, a higher variance in predisposition 
generates both a higher aggregation in parasite distribution and a larger parameter region for 
coexistence; in this limited sense, it may stated that aggregation promotes coexistence.

Table 2. Summary of models examined in this chapter

Biological Assumption Mathematical Method Mechanisms of Coexistence

No direct interactions. 
Induced mortality7

Assumption of independent 
negative binomial 
distributions

Aggregation of parasite distributions

As above9 Negative binomial 
distributions with fixed 
correlation coefficient

As above and favored by negative 
correlation coefficient

As above18 Exact computation of 
invasion coefficients

Trade-off fertility-survival, with subtle 
effects on host mortality schedules 
that can allow coexistence

Competition at 
establishment. No induced 
mortality13

Normal approximations Inter-specific competition lower than 
intraspecific

As above with variance in 
predisposition to infection13

Normal approximations Imperfect correlation between 
predisposition to infection from the 
different parasite species

Density-dependence in 
parasite fertility.13 Induced 
mortality allowed (this 
chapter)

Normal approximations.13 
Exact computation of 
invasion coefficients (this 
chapter)

Inter-specific competition lower than 
intraspecific
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Are there general predictions about patterns that can be observed in natural population? At 
this level of generality, it seems very difficult; for instance, predictions about correlations between 
different parasite species depend on the mechanisms allowing for coexistence. Positive (but low) 
correlation coefficients are produced simply by the mixture of hosts of different age (and other 
groups); strong intraspecific competition, coupled with a low inter-specific one, will make them 
more positive, as well as a strong variance in generic predisposition to infection. On the other 
hand, predisposition to different parasite species differing among hosts will force towards nega-
tive correlation.

Finally, the dynamics exhibited by the models displayed in this chapter is very simple: quick 
convergence towards an equilibrium. This indeed is a typical behavior of competition systems 
and one may wonder whether interactions with hosts can modify this. The examples shown in 
this chapter have considered a rather limited parameter range, that allowed for a low-dimensional 
truncation of the infinite system and/or for a reasonable normal approximation. It is known, on the 
other hand, that host-parasite interactions may induce cycles, especially when parasites affect host 
fertility,2 although variance in host predisposition to infection and parasite competition decrease 
the likeliness of cyclic behavior.32 Simple dynamics with quick convergence to equilibrium has been 
the rule in the examples examined for this chapter; however, it seems likely that more extensive 
numerical explorations will uncover examples of complex dynamics in host-2 parasite systems.
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Appendix. The Model Analyzed
The system in the variables pij(t) arising from the assumptions shown in Table 1 is:
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where  � � ��L��� and, by convention, p 1, j(t) � pi, 1(t) � 0.
The system is completed by equations (1) for L1 and L2.
In the quasi-equilibrium approximation, L1 and L2 are given by (2) and  � [ �] by (3).
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Metapopulation Models in Tick-Borne 
Disease Transmission Modelling
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Abstract

Human monocytic ehrlichiosis (Ehrlichia chaffeensis), or HME, is a tick-transmitted, 
ricksettisal disease with growing impact in the United States. Risk of a tick-borne disease 
such as HME to humans can be estimated using the prevalence of that disease in the tick 

population. A deterministic model for HME is explored to investigate the underlying dynamics of 
prevalence in tick populations, particularly when spatial considerations are allowed. The dynamics 
of HME in a single spatial patch are considered first to determine which model components are 
most important to predicting disease dynamics in a local ecology. The model is then expanded to 
spatially-explicit patches on which patch connectivity, the surrounding environment and bound-
ary effects are studied. The results of this investigation show that predicting risk of this disease to 
humans is determined by many complicated interactions. Areas that would be endemic in isolation 
may or may not sustain the disease depending on the surrounding habitat. Similarly, control efforts 
are shown to be far more effective when applied in wooded habitats than in neighboring grassy 
habitats. Boundary assumptions which describe the reality of increasing habitat fragmentation 
additionally play a large role in predicting the endemicity of an HME outbreak. Overall, HME 
and all tick-borne diseases are complex, nonlinear systems that have just begun to be explored.

Introduction
Tick-borne diseases are increasingly affecting human health throughout the world. These 

diseases include Lyme disease, Rocky Mountain spotted fever, human babesiosis, ehrlichiosis, 
anaplasmosis, tick-borne relapsing fever, Colorado tick fever and tick paralysis. Each of these 
tick-borne diseases has a unique life history that includes a combination of three elements. First, 
one or more tick species serves as a competent vector of the disease, i.e., the tick can transmit 
the disease. Second, the given tick species has a preferred host or hosts that are reservoir hosts 
for the pathogen, i.e., the host can transmit the disease back to ticks but is not affected by the 
infection. Finally, the disease is caused by a pathogen with its own dynamics and these patho-
gens consist of viruses, protozoa and bacteria including many ricksettia. While tick-borne 
diseases have great variety in their structure, one feature all of these diseases share is the erratic 
nature of human outbreaks, which makes the prediction and prevention of future outbreaks 
quite difficult. Recent literature displays increasing research efforts in this area1 and there is 
a growing understanding of the underlying dynamics of tick-borne diseases. This increased 
comprehension has in turn supported the development of mathematical models to further 
explore tick-borne disease.
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Human monocytic ehrlichiosis (causative agent: Ehrlichia chaffeensis) is a tick-transmitted, 
rickettsial disease that has recently increased substantially in the USA from 142 reported cases in 
2001 to 506 reported cases in 2005.2,3 HME, as first reported in reference 4, produces a variety 
of clinical symptoms ranging from a mild illness to a severe, life-threatening disease with a case 
fatality rate of approximately 3%. In the United States, HME cases are most frequently reported 
in the Southeastern and south-central States,5 but the range is rapidly expanding northward.6

The lone star tick (Amblyomma americanum) is suspected to be the major species that transmits 
HME7,8 and the white-tailed deer (Odocoileus virginianus) has been identified as a major reservoir 
host for E. chaffeensis.9,10 The lone star tick is a hard-bodied Ixodid tick with four life stages: egg, 
larva, nymph and adult. With the exception of the transition from egg to larva, the tick is obligated 
to acquire a bloodmeal to molt from each life stage to the next. Unlike many Ixodid tick species, 
the lone star tick uses the same hosts for each life stage and in many areas, the majority of their 
blood meals are from the white-tailed deer.11 This simplified life history allows the exploration 
of dynamics between a single tick species and a single host species. The system may allow us to 
gain insights into tick-borne diseases that might otherwise be missed because of the additional 
complications of multiple host species.

This chapter focuses on the analysis of a mathematical model for HME transmission, which 
is based on a previously published model by Gaff and Gross.12 We do not repeat their work, but 
rather, after a brief introduction to the model, we focus our attention on exploring the dynam-
ics resulting from various spatial configurations of that model. These investigations reveal the 
importance of metapopulation structures and local environmental parameters in predicting the 
dynamics of HME and in evaluating the efficacy of control efforts, such as the reduction of the 
tick population through acaricide use. In particular, we will illustrate the importance of correctly 
modelling local environmental parameters, patch connectivity, the surrounding environment and 
boundary assumptions in HME analysis efforts.

Methods
Metapopulation Modelling

Population biologists have been using metapopulation models in some form for nearly one 
hundred years,13 with the word “metapopulation” first appearing in 1969.13 In such models, a 
patch of land is marked as either inhabitable or uninhabitable. Generally, inhabitable patches 
have limited connectivity to other inhabitable patches and the focus is on the probability of 
extinction or survival across a given set of patches. Landscape ecology has emerged more recently14 
and supports the approach of viewing a landscape in continuous patches with differing ecolo-
gies. A model using landscape ecology will have four major components: variations in patches, 
variations in the surrounding environment, boundary effects and patch connectivity.14 Because 
tick population dynamics are very sensitive to the local environment, this latter modelling 
approach is quite useful. Within landscape ecology, there is the so-called patch-matrix theory 
in which a spatial region is divided into patches and the dynamics in the model occur within 
each patch while interaction such as migration or colonization is allowed between patches.14 
In the patch-matrix theory, the patch structure is static throughout the time that the model 
is considered; however, other landscape ecology models may actually consider variable patch 
structures in which the spatial patterns and patch relationship change over time.15 In either 
setting, patches may be considered to have different sizes and elaborately-shaped boundaries. 
Recent studies have considered the effect of forest fragmentation on tick-host or other species 
interactions and determined that patch sizes, patch boundaries, patch interactions and direct 
and indirect consequences of patch placement at the edge of a grid have complex dynamics that 
must be considered carefully in future studies.16,17

In this chapter, we consider a temporally static rectangular grid of uniformly-shaped patches. 
Each patch will have unique parameter values that reflect its local ecology. Migration will be al-
lowed to each patch’s nearest neighbors based on the gradient in population levels. Because our 
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patch and habitat assumptions will be spatially explicit but not necessarily spatially realistic, we 
may want to consider our model to be an example of metapopulation ecology rather than land-
scape ecology.18

Let’s return for a moment to the four components of metapopulation ecology and discuss their 
role in our investigations.

Variations within Patches
We will investigate the importance of the choice of parameter values to the dynamics of HME 

outbreaks within a single patch. In general, tick populations fare much better in wooded areas 
than in grassy areas as a result of exposure to heat and desiccation in open areas such as grasslands. 
Many of our investigations will explore the importance of the effect of division between grassy 
and wooded areas in our spatial models on the endemicity of disease.

Patch Connectivity
The amount of patch connectivity is critical in our explorations. It isn’t surprising that if migra-

tion between neighboring patches is high, then the individual spatial characteristics are quickly lost 
to a population with converging characteristics. It is difficult and important to determine an ap-
propriate and realistic scheme for patch migration to capture the essential dynamics of a study.

Variations in the Surrounding Environment
With migration between patches in our model, we explore the importance of the surround-

ing environment to the sustainability of disease. For example, if an endemic area is surrounded 
by nonendemic areas, under what conditions can the disease be sustained when migration to 
surrounding nonendemic patches is allowed?

Boundary Effects
It has been demonstrated that patch edges are critical in spatial dynamics.17,22 We illustrate 

some boundary effects and contrast several choices of boundary conditions.

Description of the Mathematical Model
As we explained in the introduction, our model is a simplified representation of the 

tick-host-HME system using a single host population, a single life stage and a single pathogen. 
The dynamics are modeled using differential equations on a discrete spatial grid consisting of 
environmental patches. White-tailed deer (O. virginianus) serve as our generic host population 
and lone-star ticks (A. americanum) as the tick population. The population densities of the host 
and tick population in each patch are denoted by Ni and Vi respectively and the densities of the 
HME-infected and infectious populations are denoted by Yi (hosts) and Xi (ticks). Both hosts and 
ticks are considered susceptible when not infected. Once infected with HME ticks are assumed 
to be infected for life.



54 Modelling Parasite Transmission and Control

Parameter and function names and values are summarized in Table 1. The first equation  
describes the population dynamics of the host population in patch i, for which there is logistic 
growth with carrying capacity, Ki, as well as an external death rate, bi, caused by hunting or removal. 
The last term in the equation models the migration from the given patch to all other patches at 
a rate dependent on the population differential between patches and the connectivity between 
patches. The second equation describes the tick population dynamics, which are similar to the host 
dynamics with the carrying capacity for the ticks as the product of the maximum number of ticks 
per host, Mi and the number of hosts, Ni. In addition, the external death rate for ticks includes 
both weather, b̂i  and acaricide, �i, components. The first terms in the third and fourth equations 
describe the new infections for the host and tick populations respectively, with transmission rates 
given by A and Â. The next terms reflect the logistic growth and external deaths of the infected 
host and tick populations and the last terms are the migration terms, which show the proportion 
of infected hosts and ticks that migrate as given with the rates in the first two equations. The third 
equation also includes a host recovery rate, vi.

Variations within Patches
Prior to performing our metapopulation experiments, we assess the relative importance of each 

input parameter’s influence on the results of the experiment. To accomplish this task, we use the 
Latin hypercube sampling (LHS) technique that is described in detail by references 19 and 20. 

Table 1. Variable and parameter names used in the model for each 10,000 m2 patch i

Name Description Baseline Values

Ni Host population density Initially 10 hosts/patch

Vi Tick population density Initially 3000 ticks/patch

Yi Density of hosts infected with disease Initially 8 hosts/patch

Xi Density of ticks infected with disease Initially 80 ticks/patch

�i Growth rate for hosts 0.20/month

�̂ Growth rate for ticks 0.75/month

Ki Carrying capacity for hosts 20 ticks/patch (woods)

15 ticks/patch (transition)

10 ticks/patch (grass)

Mi Maximum number of ticks per host 200/host

bi External death rate of hosts 0.01/month

b̂i External death rates of ticks 0.01/month (woods)

0.05/month (transition)

0.1/month (grass)

�i Acaracide-induced death rate for ticks 0/month

Ai Transmission rate from ticks to hosts 0.02/month

Âi Transmission rate from hosts to ticks 0.07/month

vi Recovery rate of hosts 0/month

mij Migration rate between neighboring patches 0.01

Parameter values are taken from reference 12.
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We begin by choosing the parameters in Table 1 that we believe are most likely to vary within 
individual ecologies and we also choose biologically feasible ranges for the parameters. Note that 
in our LHS runs we combine the natural and acaracide-related tick death rate into a single term, 
b̂. We then randomly sample each of the nine chosen parameters uniformly across their feasible 
ranges to create 600 parameter sets. We select numerical outputs that can quantify the behavior of 
the model in each 30-year simulation: (1) the maximum percent of infected ticks during all time 
steps, a measure of the intensity of an outbreak and (2) R0, the basic reproduction number, which 
is a measure of the endemicity of an outbreak.12 If R0 is greater than one, a disease is endemic and 
if R0 is smaller than one, the disease will die out.

After verifying a monotone relationship between each input parameter and each output 
measure, we compute the partial rank correlation coefficients (PRCC) to determine how much 
each input parameter contributes to changes in our output measures. In Figure 1 we show the 
graphs of the residues from multiple linear regressions performed on the input parameter ranks 
compared to the reproductive number ranks. By ranks we mean that actual values have been 
replaced with the integer values that correspond to their relative ascending orders. The cor-
responding PRCC values are shown above each graph with respective statistical significances. 
The illustration shows the correlation between a strong PRCC value and a linear relationship 
between input and output ranks. In this analysis, 600 runs with random parameter samplings 
on a uniform distribution are performed and the PRCC values for runs with several hundred 
more or fewer samplings return similar values. The strength of the measured PRCC correlation 
depends strongly on the chosen parameter distributions; in particular, a distribution chosen with 
a large range will have a stronger PRCC result. The ranges chosen for this analysis are considered 
to be the most biologically feasible.

Figure 1. LHS for basic reproductive number on a single patch. Each input parameter is 
sampled 600 times and subsequently 600 randomly-mixed parameter sets are created. The 
basic reproductive number R0 is computed for each of the 600 parameter sets. Then each 
parameter set and the resulting R0 values are replaced with their integer rank and multiple 
linear regression is performed on the ranks of each input parameter versus R0. The residues 
are pictured along with PRCC and p-values which indicates the significance of the nonzero 
PRCC. We see that a stronger linear trend between input and output ranks corresponds to a 
PRCC-value near 1 (direct correlation) or 1 (inverse correlation). These results are summarized 
along with other PRCC data in Table 2.
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Referring to the PRCC measurements for the one-patch disease model shown in Table 2, we see 
that all parameters with the exception of host carrying capacity and host external death contribute 
significantly to both the intensity and endemicity of HME outbreaks. We note that  Â, the trans-
mission rate from hosts to ticks, is much more important to the intensity than to the endemicity. 
Of particular interest is the tick growth rate, �̂, which contributes weakly, yet directly, to the basic 
reproductive number and contributes inversely to the outbreak intensity. Biologically this result 
suggests that a large number of ticks would cause a larger epidemic immediately, but would dilute 
the infection in the long term. Likewise, host recovery, v, decreases the immediate intensity of an 
outbreak but encourages endemicity; however, the impact of v is fairly weak in comparison to the 
other parameters and we assume no host recovery as our baseline value.

We note additionally that the one parameter with extremely strong PRCC values for both the 
intensity and endemicity of an HME outbreak is b̂, the external death rate of ticks. The intensity, 
but not the endemicity, is also strongly influenced by host and tick birth rates, � and �̂, as well as 
by the disease transmission rate, Â, from hosts to ticks. Looking forward to our simulations with 
multiple patches, we note that because the value of b̂  will vary in the wooded and grassy patches, 
we would expect patch dynamics to be important in predicting long-term disease behavior while 
the short-term intensity of an HME outbreak may not show as much sensitivity to patch dynamics 
if three of the four the most influential parameters are constant along our patches.

We presume the variables that are biologically the most sensitive to changing in various geo-
graphic locations are b̂, the external death rate for ticks and A, the transmission rate from ticks to 
hosts. Both of these parameters are found to be significant both to the intensity and endemicity 
of HME outbreaks in the LHS sensitivity analysis. Differing weather patterns would influence 
the tick death rate, b̂ and to a lesser extent the tick growth rate, �̂. Variability in species diversity 
of hosts, with some species more susceptible to the disease than others, would influence the value 
of A and, to a lesser extent, Â. In Figure 2 we illustrate the effects of varying these two parameters, 
which are most likely to change within a single patch.

Figure 2. Importance of the tick death rate and host susceptibility. The graph on the left shows 
the long-term annual average of the percent of infected ticks. The vertical axis is the average 
percent of infected ticks over the last eight years of a 30-year HME simulation. We see that 
as the environmentally induced death rate of ticks, b̂, increases the percentage of hosts and 
ticks with HME diminishes. The graph on the right shows the long-term annual average of the 
percent of infected ticks. We see that as the host susceptibility, A, increases the percentage 
of hosts and ticks with HME grows as well. This is an important parameter to consider when 
measuring the influence of host diversity.
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Patch Connectivity
Following the set-up of reference 12, we began with two patch types: grassy patches and wooded 

patches. In our baseline setup, both grassy and wooded areas are endemic for HME. However, the 
parameters for the wooded areas are more favorable to growth of both the tick population and 
the infection. In particular, two parameters differ from grassy to wooded areas, the host carrying 
capacity, Ki and the tick death rate, b̂i . In our one-patch sensitivity analyses, we found that the value 
for the carrying capacity was not particularly important in predicting disease dynamics but that 
the tick death rate did have strong influence. We begin this section with a simple consideration 
of two connected patches that share all parameter values except for the tick death rate, b̂i  and we 
explore how their connectedness influences disease levels.

We apply the LHS sensitivity analysis to the two-patch model and we allow our significant 
parameters from the one-patch model to vary in the same ranges. We have two significant new 
assumptions in this experiment. First, the tick death rate, b̂i , is allowed to vary separately in the 
individual patches, while the other parameters vary uniformly in both patches. Secondly, we in-
troduce migration as given in the mathematical model and we vary the value of mij between 0 and 
0.25. The results of the analysis are presented in Table 2. We first observe that the parameters with 
strong PRCC values in the one-patch simulations have similarly strong values in the two-patch 
simulations and that the variations in migration levels were insignificant compared to the variations 
in these parameters. Secondly, we observe that by allowing the tick death rate, b̂i, to vary individually 
in each patch, we effectively cut its PRCC value in half as a contributor to the overall dynamics 
of the infection. Of course, this makes intuitive sense because the parameter is only contributing 
to half of the area. The parameter’s contribution to the dynamics in its patch of origin is cut only 
slightly by its interaction with neighboring patches. We can reconfirm in the sensitivity analysis 
for the two-patch model that the effect of the tick birth rate, �̂i , on the disease endemicity is not 
significant and the value of host recovery v is statistically significant but small. We also confirm 
that the dynamics of changing the tick death rate, b̂i , between patches is more influential on the 
value of the basic reproductive number than to the maximum percent of infected ticks overall.

Though we note above that the PRCC values for the migration rates are insignificant in the 
LHS analysis, we caution against the conclusion that migration is not important. We showed, for 
example, in reference 21 that when two patches interact with migration the patches very quickly 
lose the individual characteristics that were caused by their local ecology. Thus, the results of the 
sensitivity analysis merely indicate that global changes in the landscape ecology are more important 
than the connectivity of the individual patches; however, in a given ecology, the patch connectivity 
is indeed extremely important.

To continue our exploration of the importance of patch connectivity, we now move to our 
consideration of the interaction of a wooded patch and a grassy patch with variable birth and 
death rates oscillating near the baseline values given in Table 1. The oscillating values are explained 
in reference 12 and are intended to mimic tick life history as well as seasonal climatic effects. We 
vary the patch connectivity between the grassy patch and the wooded patch. Figure 3 graphs the 
migration rate versus the long-term annual average proportion of infected of hosts and ticks in 
the combined patches. The graph indicates that as migration between patches increases, the in-
dividual characteristics at each patch become diminished. Note that Table 1 records our baseline 
migration level of mij � 0.01 and at this level metapopulation effects created by environmentally 
unique patches can be observed.

One unexpected result from this study is the importance of location for control efforts. One 
method frequently used to control HME in a given area is through the use of acaracides, chemical 
agents applied topically or systemically to hosts that kill ticks. In our model, the application of acar-
acide is equivalent to raising the value of the parameter �, or equivalently increasing b̂ . At the bottom 
of Figure 3, we consider two scenarios for a two-patch system. With a solid lines, we indicate the 
longtime average annual percent of infected ticks in the grassy (blue) and the wooded (red) patch if 
the acaracide control is used only in the grassy patch and with a dotted line we show the same outputs 
but with the assumption that the acaracide control is used only in the wooded patch. The figure shows 
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that without regard to migration rates, control applied in the wooded patch effectively reduces the 
prevalence in both patches to near zero. On the other hand, if the control is applied only in the grassy 
patch the prevalence remains high in both patches. It is perhaps counterintuitive that increases in 
migration rates contribute significantly to the reduction of HME prevalence in both patches; i.e., 
the patch in which the acaracide control is applied can benefit more from the acaracide if migration 
is allowed. Patch connectivity can play a significant role in the disease dynamics.

Figure 3. The effect of increased patch connectivity. In the top two graphs, the vertical axis is 
the average percent of infected hosts (left) and ticks (right) over the last eight years of a 30-year 
HME simulation. We observe that the individual effects resulting from a local ecology are lost 
with increased with large inter-patch migration. In the bottom graph, the vertical axis is the 
average percent of infected ticks over the last eight years of a 30-year HME simulation. We 
observe that when tick control is applied only in wooded areas, the control effort is effective 
regardless of migration levels. However, when the control is applied only in the grassy patch 
then the level of patch connectivity plays a large role in the effectiveness of the control.
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The Surrounding Environment
In our remaining investigations, we consider more complex metapopulation ecologies. Future 

simulations will rely on a larger 5 & 5 spatial grid of patches that are connected to the nearest 
neighbors. Although the patches are established in a rectangular fashion, individuals move away 
from the center of a patch in radial directions and therefore any of the six patches that surround 
an interior patch would be considered equally connected to the given patch. In addition, we 
consider the boundaries as being reflecting boundaries, in which hosts and ticks located in edge 
patches are unable to cross the boundaries and thus remain in their patch rather than migrate in 
the boundary direction.22 We will discuss the importance of this boundary assumption in the 
following section.

As noted above, the initial work on this model discussed only wooded and grassy habitat types 
for patches. In reality, the grassy areas would not instantly transform to wooded areas, but rather 
there would be some intermediate area of land with intermediate parameter values. Additionally, 
transition areas may be of importance to other features such as the likelihood of host-tick encoun-
ters because ticks may be more likely to use the vegetation of intermediate height to attack hosts. 
We simply define transition patches as having parameter values halfway between grassy and wooded 
patches for the host carrying capacity, Ki and the tick death rate, b̂i. In multiple simulations, we 
seek to check the importance of the inclusion of such areas in the use of the model to predict the 
spread of HME in various settings.

Figure 4 illustrates this point with one set of simulations. In the figure, we show side-by-side 
the number of infected ticks that populate a 5 & 5 spatial grid in three scenarios that are described 
visually in the figure. We observe there that there is predictable sensitivity to replacing grassy areas 
with transition zones and perhaps greater sensitivity to replacement of the wooded areas that are 
highly endemic. In fact, when the graphs of the percent of infected ticks in each grid are compared, 
there is virtually no difference between the first two scenarios and only slight variation to the third. 
This suggests that in applying the model to a specific scenario, transition areas could be included 
as grassy areas with little loss of accuracy in predictions. Inclusion of other aspects of transition 
zones such as increased host-finding rates will be explored in future work.

Boundary Effects
Edge effects and habitat fragmentation have long been studied to understand the impact on 

various processes.16,17,22 We use a variety of scenarios for our metapopulation model to assess these 
effects on the predicted prevalence of the infected ticks. Recall that our initial simulations assume 
that our boundary is a reflecting boundary, which is a good assumption for an environment that 
is adjacent to a river or urban area. This assumption contributes to the high numbers of infected 
ticks in the corners of the graphs in Figure 4.

Continuing with the assumption of a reflecting boundary, we now consider several scenarios 
in which a small area of endemicity is placed in a nonendemic environment. In Figure 5, we show 
where endemic (yellow E) patches are located and include a graph of the percent of infected ticks 
in all patches each month over a time period of 30 years.

The first observation we see is that an isolated endemic patch cannot remain endemic when sur-
rounded by nonendemic patches with sufficient migration (mij � 0.01) between the patches; however, 
a single endemic patch in the corner of our grid is sufficient to create an endemic environment for 
multiple surrounding patches. On the other hand, even if we double the size of the endemic area 
and place it near, but not on, our spatial boundary, we do not maintain an endemic HME outbreak, 
though we see that the outbreak takes longer to diminish. Thus, patches along a reflecting boundary 
will experience different dynamics than patches that are in the interior of our grid.

There are two other commonly used boundary conditions in the ecology literature. One is a 
toroidal, or cyclic, boundary condition in which the vertical and horizontal edges of the grid are 
considered to wrap around to the opposite boundary. The other is an absorbing boundary in which 
individuals who would migrate across the edge boundary are lost. Generally for these latter two 
boundary choices edge effects will be lost, though some symmetries would appear for toroidal 
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boundaries as an expected result of the structure.22 As an illustration of lost boundary effects, we 
modify our model from our standard reflecting boundaries to a toroidal boundary condition. In 
Figure 6, we see that an endemic patch on the boundary of our grid will no longer remain en-
demic when surrounded by nonendemic patches. This result shows the importance of identifying 
boundary conditions. Many geographic areas may be modeled as having reflecting boundaries if 
there are conditions such as a river or man-made buildings and structures that would preclude 
the ticks and hosts from moving in that direction. On the other hand, if the studied land area is 
surrounded by similar ecologies then toroidal conditions would most appropriately be chosen. 
These model results imply that the impact of these boundaries can be significant on the predicted 
risk of disease in a given area.

Conclusion
Tick-borne diseases are of increasing concern for human health worldwide as the incidence of 

known diseases increases and new diseases are identified. The outbreaks are notoriously sporadic 
in space and time making them difficult to predict or control. In order to provide some insights 
into the complex dynamics of tick-borne diseases, we present the results from a spatially explicit, 
mathematical model of human monocytic ehrlichiosis.

Using a metapopulation ecology framework, the model predictions show that spatial arrange-
ment/location plays a significant role. Within each individual patch, the values chosen for �̂i

, the 
growth rate of ticks and â, the transmission rate from hosts to ticks, were shown to have the most 
influence on the resulting outbreak. This indicates that favorable weather conditions that increase 
the tick growth rate will significantly increase the likelihood of an outbreak. Similarly, the species 
diversity of a given area could increase the transmission rate from hosts to ticks because many species 
are not susceptible to E. chaffeensis. This would in turn increase the likelihood of an outbreak.

Across a spatial framework, the model predictions showed that the location of a potentially 
endemic region determines if an outbreak will emanate out from that location or be washed out 
by surrounding nonendemic areas. Outbreaks are predicted to occur more commonly along areas 
where there is a reflecting boundary next to an endemic area. As human development continues to 
encroach into previously undisturbed areas, new regions that effectively have reflecting boundaries 
therefore create the potential for higher risk of outbreaks at the edges of development and wilder-
ness. While transition areas were shown to be effectively modeled as grassy areas, the importance 
of transition into human developed areas has yet to be explored.

Figure 6. Toroidal boundary effects and endemicity. The simulations from Figure 6 are re-
peated with toroidal boundaries, periodic host and death birth rates and other parameters as 
in Table 1. The boundary effect observed in Figure 5 for an endemic patch along the boundary 
is lost when a toroidal condition is used, illustrating the importance in choosing boundary 
conditions that accurately reflect the actual ecology.
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Similarly, the model showed that the location of the application of control measures could 
significantly impact the integrity of control efforts. With a two-patch system, one wooded and 
one grassy, the disease can be eliminated if the acaricide is applied in the wooded area but not if 
applied to the grassy area. This result suggests the need for future work that expands this model 
and seeks optimal solutions for the application of acaricide for a given spatial framework. We will 
use the mathematical technique of optimal control to accomplish this goal in a future work.

The predicted model results are limited by the nature of mathematical models. A mathematical 
model is an abstraction of reality and as such, it cannot capture all of the dynamics of any system. 
The model is limited by the knowledge and understandings of the biological system and thus will 
only be useful if we recognize its limitations and use those limitations as a benefit to point out 
key data gaps.

A second limitation of these results is due in turn to the limited amount of research in HME. 
While enough information is known about HME to construct a rudimentary model and gain 
many insights, the majority of tick-borne disease research has been focused on Lyme disease 
which has higher incidence levels. As stated previously, the advantage for working with HME is 
the simplifying one-host structure, but given the aggressive and seemingly indiscriminate feeding 
habits of A. americanum, additional host reservoirs may need to be added to the model system to 
fully capture the dynamics and risks of HME.

Our metapopulation model provides a solid basis for exploring the initial dynamics of HME 
across a spatial landscape. The results provide some interesting clues into the sporadic nature of 
outbreaks. Thus, in addition to future work in the optimal control of a potential HME outbreak, 
future work will also continue to expand on this model to include more information about the 
life history of the lone star tick as well as the impact of additional host species. As the incidence 
of tick-borne diseases continues to increase, insights from models such as the one presented here 
will provide invaluable tools for prevention of future human morbidity and mortality.
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Chapter 5

Modelling Stochastic Transmission 
Processes in Helminth Infections
Stephen J. Cornell*

Abstract

The number of helminths within a host can only increase by the host encountering additional 
infectious stages, so it is important to consider not only whether a host is infected, but also 
the severity of its infection. Stochastic models consider explicitly the number of parasites 

within the host and treat infection, death and other demographic events as random processes. I 
discuss stochastic helminth population models of increasing degrees of complexity, starting with 
the infection dynamics within a single host and finishing with the full parasite lifecycle among 
a population of hosts. I demonstrate the mathematical techniques that can help to analyse these 
models and discuss the insights into parasite population biology that these methods can bring.

Introduction
The number of helminth parasites infecting a particular host matters to both the host and 

the parasite. Hosts with a high worm burden suffer much stronger pathology than those with a 
milder infection and in many cases mount an immune response that strengthens with exposure to 
infectious stages of the parasite. In the terminology of Anderson and May,1 macroparasites (and 
helminths in particular) cannot reproduce directly within the host, so macroparasite infections 
develop more gradually than microparasites do because the worm burden can only increase if the 
host encounters additional infectious stages in its environment. Many of the processes affecting 
parasite demographics are density dependent—i.e., depend nonlinearly on the number of worms 
in the host—such as the risk that a female cannot find a mate,2 or the modulation of infection 
rate by the host’s immunity.3 This means that population dynamics of helminth parasites depend 
on the distribution of worms among hosts and cannot be adequately modelled by considering the 
mean worm burden alone.

A key feature of many helminth infections is that the distribution of worm burdens is aggregated, 
i.e., the variance in worm burden among hosts is greater than the mean.4 Much effort has been spent 
on building mathematical models to understand the causes and consequences of these patterns 
of infection. Aggregated distributions can be generated by heterogeneities in hosts’ encounters 
with infectious stages, or heterogeneities in the dynamics of parasites within hosts. Some of this 
heterogeneity is systematic—older hosts may be better at avoiding or resisting parasites—but much 
heterogeneity has no obvious correlation with the host’s age or other attributes.

In this chapter I shall describe stochastic models for helminth infections, where heterogene-
ity in host exposure and response are modelled by random processes. The most common form 
of randomness in these models is demographic stochasticity, so that parasite subpopulations in 
two different hosts may be different even when they are subject to the same underlying rates of 
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infection, reproduction and death. In addition, some models have allowed the parameters deter-
mining parasite population dynamics to differ between hosts, again as a random process. Random 
fluctuations in environmental conditions can also play an important role in parasite dynamics,5,6 
though I shall not discuss this here. I shall describe models with increasing degrees of complexity, 
from the infection dynamics of a single host to parasite proliferation within a host population. 
I shall demonstrate mathematical techniques which can be used to approximate and understand 
these stochastic models, using as an example a parasite which causes increased mortality in its 
host. This model is an exemplar of the host-parasite interaction and has been studied in different 
forms by several authors.7-12

Infection in a Single Host
The earliest stochastic models of macroparasite transmission described the dynamics within a 

single host only.13 The infection rate of the host is treated as a known quantity, which is assumed 
to be unaffected by the reproductive output of the worms in the host under consideration. This 
simplifies the analysis to the extent that explicit mathematical solutions can be obtained for models 
with many biological components, such as acquired immunity and parasite-induced mortality.

These models give valuable insights into how different mechanisms increase or decrease parasite 
aggregation and how this aggregation affects nonlinear quantities such as mating probabilities.2 
The main appeal of this technique is the possibility for detailed mathematical analysis, though as 
models become more biologically complicated it is sometimes necessary to use approximations. I 
shall illustrate the method by discussing a model that was studied by Valerie Isham.10

Clumped Infection and Parasite-Induced Mortality
Isham10 studied a model for helminth infections, which was not aimed at describing any par-

ticular parasite but had two notable features:

is a reasonable assumption for many helminth infections: a biting insect may transmit 
many infective larvae to the unfortunate host and eggs in faeces will develop into larvae 
that are highly clumped in space.

worm burdens.
Clumped infection was already a component of the earliest stochastic parasite models13 and is 

expected to lead to more aggregated parasite distributions, while density-dependent host death 
rate is expected to decrease aggregation.9

In this section, I shall reproduce Isham’s analysis of the model, in order to illustrate the technique 
and to discuss its strengths and limitations. In the model, a host of age a is assumed to harbour m 
parasites. The processes by which m changes are

m ��m ��c at rate �(a)hc. This represents an infection event taking place at 
rate �(a) (which may depend on host age a) and when infected the host gains a clump 
containing c parasites. The distribution of clump sizes is, where � ��

�
c ch0 1 .

m ��m �1 at rate �Mm, representing independent parasite death events 
at rate �M.

�H(a) � �m. This represents the host’s intrinsic death 
rate �H, which may depend on its age a and an increased death rate due to the number of 
parasites in the host.

Under these assumptions, the following Forward equation for the joint probability Pm(a) that 
a host reaches age a and contains m parasites can be written:

dp a
dt

a m h a m pm
H M

( )
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The right-hand-side term on the first line of this equation represents all the processes which 
change the worm burden out of state m; the terms on the second line represent processes where 
the worm burden changes into state m.

This equation can be analysed with the use of the probability generating function (PGF) 
R a z z p am

m
m( ; ) ( )� �

�� 0 . Multiplying Eqn. (1) by zm and summing, we note that we can simplify 
terms like �m

m
mmz p a z R a z z�

� � � �0 ( ) ( ; )/  to give

�
�

� � � �
R a z

z
a a h z R a zH

( ; )
   { ( )    ( )[ ( )    ]} ( ; )� � 1
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�
�

 {(     )     }
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This equation could be solved directly, but to study age-intensity profiles we are instead inter-
ested in the probability p(m|a) of having m parasites conditional on reaching age a. If the probability 
of surviving to age a is S a p a R am m( )   ( )    ( ; )� ��

�� 0 1 , then the standard relationship between joint 
and conditional probabilities gives pm(a) = p(m|a)S(a). An equation for the survival probability 
is obtained by substituting z = 1 into Eqn. (2):

dS a
da

a S a m a S aH M
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mM being the mean of m conditional on the host reaching age a.

Let Q a z z p m a R a z S am
m( ; )    ( | )    ( ; ) / ( )� ��

�� 0  be the PGF for p(m|a). Using Eqns. (2) and (3), 
we can derive the following equation for Q(a;z):
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Explicit Solution of the Model
Equation (4) can be solved explicitly by first defining �

� � �

� �( )    log (     )    
   z M M

M

z
�

� �� �
� , and then making 

the change of variables u a       � � �
2 ,

 v
a       � � �
2 , W(u, v) = log Q (a; z). Eqn. (4) can then be written 

in the form
�

�
� � � � �

W u v
u

f u v u v g u v( ,  )
    (     ,      )    (     ),  

where f (a,'(z)) = φ(a)[h(z) �1], g(a) = �mM(a). This equation can be integrated directly to give

W u v f w v w v g w v dw( ,  )    [ (     ,      )    (     )]    � � � � � � F v
u

u

( ),
o

�  (5)

where u0 is an arbitrary constant and F(v) is an arbitrary function of its argument.
The desired solution is obtained by imposing the following two boundary conditions: (i) Q(0, 

z) = p(m = 0|a = 0) = 1, which states that the host is uninfected at birth, constrains the form 
for F; and (ii) Q a p m am( ,  )    ( | )   1 10� ��

�� , which states that the probabilities of different worm 
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burdens sum to unity. While there is only one arbitrary function in (5), the second boundary 
condition is required because g = �mM(a) needs to satisfy the self-consistency condition with 
mM(a) = (Q(a;z)/(z|z�1. The final solution is

Q a z f y a z y dy
z a
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where f is a general function and for the specific form f (a,'(z)) = φ(a)[h(z) �1] we get
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Note that the equivalent solution in ref. 10 was derived by assuming that �(a) is independent 

of a, though as shown here a solution can be obtained without this assumption.

When Can This Type of Model Be Solved Explicitly?
We are now in a position to discuss the type of models which can be solved by this method.

are linear functions of m. If some processes took place at a rate proportional to m2, then 
there would be terms of the type � �2 2P z/  and there is a much smaller chance that an 
explicit solution to the PDE would be possible. The problem would become completely 
intractable if rates had a still more complex dependence (e.g., exponential) on m. This 
severely limits the degree of biological realism of models for which explicit solutions are 
available.

m does not bias survivorship 
as a function of m and as a result the expression (6) does not depend on �H(a). This means 
that the results can be applied to organisms with any type of age-death relationship.

belies its usefulness. In principle, the value of p(m|a) can be obtained by expanding Eqn. 
(6) as a series in powers of z, though as noted by Isham this does not give very convenient 
expressions. Moreover, the expression is still more cumbersome when the infection rate �(a) 
depends on age a. Nevertheless, some low moments of the distribution can be obtained 
in a useful form, as discussed in the next section.

Effect of Clumping and Parasite-Induced Mortality on Aggregation
The mean m a mp m aM m( )   ( | )� �

�� 0  and variance V a m p m a m aM m M( )   { ( | )}    ( )� ��
�� 0

2 2  of the worm 
burden, conditional on the host reaching age a, can be straightforwardly obtained from derivatives 
of Q(a;z) evaluated at z = 1. For the case φ = constant, using Eqn. (6) we have
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The mean mM(a) increases with age a but approaches a finite limit as a increases. The variance to 
mean ratio IM(a) = VM(a)/mM(a) is a measure of the degree of aggregation in parasite burdens, being 
unity for a Poisson distribution. As discussed in ref. 10, IM is unity when infecting clumps contain 
only one parasite, but increases when infecting clumps are bigger. Parasite-induced mortality has a 
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more complicated effect on IM, however. The limiting value of IM(a) for large a can either decrease 
or increase with �/�M, depending on the details of the distribution of clump sizes.

The model was extended by Herbert and Isham14 to allow for more than one life history stage 
of the parasite and also for nonMarkovian processes in life history progression (i.e., the time spent 
in different stages was not assumed to be exponentially distributed). The influence of mortality on 
parasite aggregation was further explored by Barbour and Pugliese,15 who assumed nonclumped 
infection but considered both density-dependent parasite mortality and a range of scenarios for 
density-dependent parasite-induced host mortality.

Moment Closure

obtain an exact solution for the distribution of worm burdens. However, it is possible to obtain an 

the model described above, it is instructive to see how the approximation works in this case.
The mean mM and the variance VM of the worm burden can be expressed as derivatives of Q(a;z) 

at z = 1, so from Eqn. (4) these quantities satisfy

dm
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where TM(a) = �m3p(m|a) is the expectation of the cube of the worm burden. We find in general 
that the rate of change of the n’th moment of the distribution depends on moments of order higher 
than n. This hierarchy of equations cannot be solved, because the solution to any equation depends 
on the solution of an equation that has not yet been solved.

The technique of moment closure gets around this problem by approximating a higher-order 
moment in terms of a combination of lower-order ones. For instance, Isham10 used the normal 
approximation for the third moment, in which case the term multiplying � on the right-hand side 

only on mM and VM and can be solved. Reference 10 gives an explicit solution as a function of a 
and compares the results of the moment closure to the exact solution.

Note that the moment equations form an unclosed hierarchy, even in a case such as this where 
an explicit exact solution for the moments themselves is available. However, the moment closure 
approximation can give approximate analytical or numerical solutions for a much wider class of 
problems. In particular, it is not restricted to processes which depend linearly on the internal 

Acquired Immunity
Immunity to many helminth infections is thought to be acquired progressively in response to 

exposure to infection challenge. Deterministic age-structured models have been used to investigate 
the importance of the host’s immune response in shaping patterns of helminth infection as a func-
tion of age.3,16 Immunity has also been investigated in single-host stochastic models.

Chan and Isham17 studied a model similar to the one described above, with the additional 
I which increased at 

a rate proportional to the current infection level. In order to aid tractability, they assumed that 
the infection rate was modulated by a linearly decreasing function of I. This leads to a first order 
PDE for the PGF of the number of parasites and immunity variable, for the reasons discussed in 

I is high 
enough, but that was not found to lead to mathematical problems for the parameters studied by 
the authors. It was not possible to obtain explicit solutions for the PGF, because of the particular 
nonlinear coefficients of the first-order partial derivatives, but the equations for the first and second 
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moments of the distribution formed a closed hierarchy so could be solved without requiring a 
closure assumption.

Host Heterogeneity
A further cause of parasite aggregation is intrinsic differences between hosts. Hosts may differ 

in the rate at which they encounter parasites or in their ability to mount an immune response. The 
host represents the parasite’s habitat, so any differences in hosts, e.g., size and/or age, may affect 
their development, reproduction and mortality.

If mathematical solutions for the distribution of worm burdens is possible for a host with 
given parameters, then results for a heterogeneous host population can be obtained by averaging 
these results (either analytically or numerically) over the host parameters.18 Isham10 noted that 
analytical results obtained in this may be unwieldy and not helpful intuitively. It is also possible 
to incorporate host heterogeneity at the level of moment equations. Chan and Isham17 followed 
this approach in a model of schistosomiasis and discovered that, while the equations for the first 
and second moments formed a closed system for a single host, the moment hierarchy was not 
closed when host heterogeneity was taken into account. Two types of host heterogeneity were 
considered—either differences in parasite encounter rates, or differences in immune response. The 
former was found to have a strong effect on parasite aggregation, but the latter had only a very 
weak effect. Further work using the same model19 showed that stochastic variability may obscure 
the expected age-intensity relationship generated by acquired immunity.

Mating Probability and Population Genetics
One of the advantages of exact solutions of stochastic single-host infection-death models is 

that the behaviour of nonlinear functions of the worm burden may be investigated explicitly. 
Cornell et al20 investigated a model of early-season dynamics of nematodiasis in sheep. The study 
focused on the reproductive output of female parasites and did not consider nonlinear processes 
which might affect the dynamics at high parasite density. Helminths are generally assumed to 
be promiscuous, but at low density there is a risk that a female may find no male to mate with in 
the same host. The resulting depression in average fecundity is known as the mating probability.2 
Mating probabilities can be estimated by assuming a given distribution of worms among hosts, 
such as Poisson or negative binomial2 and when calculated in this way they decrease to zero at 
low density. However, Cornell et al found that clumped infection led to the mating probability 
being greater than zero in this limit. This shows the importance of considering the mechanisms 
that generate aggregation when modelling parasite population dynamics.

Cornell et al20 also considered the population genetics of the parasites’ offspring and found 
that if infecting clumps have a multinomial distribution of genotypes that follow Hardy-Weinberg 
equilibrium then the offspring show small deviations from Hardy-Weinberg equilibrium. However, 
if the infective clumps were more heterogeneous, then the offspring distributions showed strong 
deviations from Hardy-Weinberg equilibrium and in particular there was a strong promotion of 
rare homozygotes.

Competition between Parasite Species
Many hosts will harbour more than a single parasite species and each species may strongly 

affect the dynamics of other parasite species within the host.21 Bottomley et al22 have extended 
the single-host framework to allow for more than one parasite species. They assumed that the 
density of adult worms affected the mortality of larval stages of either species and solved a 
stochastic model approximately by moment closure. When interactions between individuals 
of the same species were antagonistic, worm burdens were found to be underdispersed when 
interactions between species were weaker than interactions within species and overdispersed 
otherwise. However, when interactions within species were mutualistic, the variance to mean 
ratio was found to be close to unity.
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Infection among Multiple Hosts

independent of the parasite dynamics within the host. In the absence of any feedback from the 
parasite’s reproduction to the abundance of infective stages of the parasite, this method is not 
able to investigate the evolution of the force of infection over time, or the potential of control 
strategies to eradicate the parasite. In order to model the ecology of the parasite, it is necessary 
to consider the dynamics of the parasite stages that live outside the definitive host. This makes 
the model considerably more complicated, because there may be many hosts of different ages and 
infection status. The sub-populations of parasites in each of the hosts become coupled and the 
host themselves may also undergo complicated population dynamics.

Nevertheless, in many cases there are suitable approximations which simplify the models and 
make it possible to analyse their behaviour. In the present section I shall describe these techniques 
and again illustrate them with a specific example.

Hybrid Models
The problem of multiple hosts is simplified if one assumes that the host population is large 

and that the infectious stages generated by the parasite in one host subpopulation is equally likely 
to infect any of the other hosts (whether they are transmitted directly or via a vector organism). 
Each host now only sees an average force of infection (though the infection process could still be 
in the form of clumps), so a host’s infection rate is statistically independent of its worm burden. 

describe the dynamics within each host, while the abundance of the infectious stage is a determin-
istic quantity related to the mean reproductive output of the parasites infecting a host. This type 
of hybrid model is discussed in detail by Nåsell.23 Hybrid models are often cited as a motivation 
for studying single-host stochastic models, though in fact few such studies do actually relate the 
infection process to the mean reproductive output of the parasite.

Hybrid models assume that the dynamics of the host and/or the parasite’s infectious stages are 
deterministic, but allow full stochastic dynamics within the host. A moment closure assumption 
is often used to obtain an approximate solution of the within-host dynamics. I shall illustrate 
this method using a host-parasite model that was studied by Anderson and May7 and later by 
Kretzschmar and Adler.24 This model is very similar to the single-host model studied by Isham10 

clumped infection and where the infection rate is related to the parasite population size. Using 
the parameter definitions in Table 1, the model takes the following form:

nm(t) hosts with m parasites at time t, so the number of hosts in the 
system is H t n tm m( )   ( )� �

�� 0  and the total number of parasites is P t mn tm m( )    ( )� �
�� 0 .

�(t). Under the assumption that infective stages develop 
rapidly outside the host and are much shorter lived that the adult parasites in the hosts, 
the force of infection is related directly to the current parasite population in the form 
� �( )    ( )

    ( )t P t
H H t� �0

 (see ref. 24).
�M.

� and a host with m parasites dies at a per capita rate �H � 
�m. When a host dies, its parasites die too.

Given these processes, the equations for the rate of change of nm are:
dn
dt

n n H tH M
0

0 1�� � � �(     )         ( )� � � �  (8)

dn
dt

m n mm
H M m M�� � � ��� �� � �� � � � �        (     )     (     )1 n nm m� ��1 1    .�  (9)

Note the similarity between these equations and Eqn. (1) for the case h(c) = �c,1.
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Deterministic Models with Parasite Aggregation
Some of the earliest models of helminth infection dynamics were deterministic, but nev-

ertheless allowed for the fact that the distribution of parasites between hosts was aggregated. 
Anderson and May7 used this approach (see also ref. 8) to discuss processes that stabilise or 
destabilise host-helminth interactions. An equation for dH/dt is obtained by summing Eqns. 
(8,9) over m:

dH
dt

H PH   (     )     ,� � �� � �  

and an equation for P is obtained by multiplying Eqns. (8,9) by m and summing:

dP
dt

PH
H H

P m n tH P m
m

   
   

   (     )     ( ).�
�

� � �
�

�
� � �

0

2

00

�

�
 

The term �m mm n t�
�

0
2 ( )  represents the sum of square numbers of parasites in hosts, which 

depends on the details of the distribution of parasites among hosts. Anderson and May7 
related this to the mean number of parasites per host by assuming a negative binomial 
distribution with mean 

p
H and aggregation parameter k. The generating function for this 

distribution is �m
m

m
P
Hk

kz n H t z�
� �� � �0 1 1    ( )[ ( )]  and the sum of square numbers of parasites 

is �m m
P k

Hkm n P�
� �� �0

2 12

      ( ) . Since the second moment is approximated in terms of the first by 
assuming a particular distribution, this is actually a form of moment closure.

Under this approximation, the system is reduced to two ordinary differential equations which 
can be analysed with standard methods. As shown in reference 7, a positive value of k leads to 
a stable equilibrium between host and parasite, while a negative value of k (corresponding to a 
conventional binomial distribution, which is underdispersed) destabilises the equilibrium. They 
concluded that parasite aggregation can stabilise host-parasite interactions.

While this approach is not able to quantify the degree of aggregation which is expected to arise 
from a given stochastic model, it make it possible to explore the consequences of aggregation on 

Table 1. Definition of model parameters used throughout this chapter

Symbol Definition

m Number of parasites in host
a Host age
t Time
c Number of infecting parasites in a clump
hc Probability of c parasites in a clump
pm(a) Probability that a host reaches age a and has m parasites
p(m|a) Probability that a host has m parasites given that it has age a
R(a;z) Probability generating function of pm(a)
Q(a;z) Probability generating function of p(m|a)
P Mean number of parasites per host
H Mean number of hosts
� Host birth rate
�H Host death rate in absence of parasites
� Additional host death rate per parasite
�M Parasite death rate
� Host infection rate
� Asymptotic infection rate per parasite
H0  Host infection efficiency
nm(t) Number of hosts with m parasites
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nonlinear processes such as mating probabilities2 and the evolution of drug resistance.25 It has re-
cently been used to discuss in some detail the importance of different density dependent processes 
on transmission,26 control27 and drug resistance28 in helminth infections.

Moment Closure for the Variance
Rather than assuming a fixed degree of aggregation of parasites among hosts, Kretzschmar 

and Adler24 instead assumed that the distribution of parasites will itself evolve due to the sto-
chastic dynamics. They first wrote an equation for Q m nm m   � �

�� 0
2  by multiplying (8,9) by m2 

and summing:

dQ
dt

Q P H mM H M    (     )    (     )        � � � � � � �2 2 3� � � � � � nnm
m

.
�

�

�
0

 

To approximate the final term, they again assumed a negative binomial distribution of worms 
between hosts with mean p

H  and shape parameter k so that �m m
k k P

k H
m n Q P�

� � �� � �0
3 1 2 3

2 2 3 2         (     )(     ) . 
However, rather than assume a fixed aggregation parameter k they constrained it by stipulating 
that the first and second moments of nm be P and Q. This means that k P

H Q P P
   

( )
�

� �

2

2 , so finally we 
have

 

and the equations for H, P and Q form a closed hierarchy (note that Kretzschmar and Adler24 
used a slightly different formalism in terms of the variance to mean ratio, but their presentation 
is equivalent to that shown here).

While the formalism is more complicated than that of Anderson and May7 (three differential 
equations rather than two), it can still be analysed with standard methods. Kretzschmar and Adler24 
also studied the case where parasites were distributed according to a Neyman Type-A distribution 
and found parameter values where assuming one class of distribution predicted a stable host-parasite 
equilibrium and the other predicted instability. More specifically, they found that aggregated dis-
tributions would only produce a stable equilibrium if the variance to mean relationship increased 
with increasing mean worm burden. Their study underlines the sensitivity of the predictions of 
moment closure models to the type of closure that is assumed.

Rosà and Pugliese11 extended Kretzschmar and Adler’s model to incorporate clumped infec-
tion and free-living stages of the parasite, as well as host heterogeneity. They found the latter to be 
a much more strongly stabilising effect than clumped infection. Bottomley et al29 used a related 
hybrid approximation (though assuming normal rather than negative binomial parasite distribu-
tions) to study the coexistence of parasite species within a constant population of hosts, deriving 
equations related to the Lotka-Volterra equations.

Fully Stochastic Models
If the host population is not so large as to be essentially infinite, then the abundance of infective 

stages is no longer statistically independent of the worm burden of any particular host and the 
-

tion might also need to be taken into account. When this is the case, analytical approximations are 
typically unavailable and results are usually obtained by individual-based computer simulations. 
These are relatively straightforward to program: one takes account of each host’s parasite burden, 
as well as other attributes such as host age and immune status as necessary. The free-living stages 

when the numbers of infectious stages are extremely large). Parasite infection and death events can 
be simulated as stochastic processes, where the time to the next event is an exponentially distrib-
uted pseudorandom variable and the type of event is determined pseudorandomly by weighting 
each possibility by its rate.9 Alternatively, a discrete time step can be assumed and the number of 
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births, deaths, etc. per timestep can be generated as pseudorandom numbers with appropriate 
distributions (see e.g., ref. 30).

Explicit stochastic simulation models of this type are commonly used as tools to inform control 
strategies, such as the LYMFASIM program to model lymphatic filariasis31 and SCHISTOSIM for 
schistosomiasis.32 It is not possible to analyse such models in the same way as analytical models, so 
optimal control strategies can only be found by trial and error. However, this might not be a serious 
handicap given modern computing power. Simulation models are capable of handling intricate, 
biologically realistic processes where an analytical approach would be insurmountably difficult.

While inevitably more complicated, fully stochastic models can nevertheless sometimes be 
understood by comparing their behaviour to single-host or hybrid models. Since hybrid models 
assume that the host population size is infinite, the fully stochastic model will be similar to a hy-
brid model when the host population is large enough. It should be stressed that, in this context, 

parasite population in one host; in this sense, an infinite population where each individual can 
only infect nearby neighbours has a very small effective population size. The hybrid approximation 
assumes that the abundance of infective stages is effectively a deterministic variable, but when the 
host population size (and therefore the adult population size) is finite the abundance of infective 
stages will fluctuate. These fluctuations will be larger larger when the host population is smaller. 

by Cornell et al.33,34 There follows a discussion of some effects of finite host population sizes on 
helminth population dynamics.

Mating Probability

depressed at low density if the worms reproduce sexually. As a result, there is an Allee effect35—i.e., 
the parasite population will tend to die out if the density of infectious stages is below a certain 
threshold. In an infinite host population, where the dynamics of the force of infection are deter-
ministic, the parasite will always go extinct if it starts below this threshold. However, the force of 
infection can fluctuate stochastically above this threshold when the host population is finite. This 
means that epidemics may be more likely in small populations than in large ones if the initial force 
of infection is low.33 If infection is clumped, however, the mating probability is increased and the 
Allee effect may be removed.34

Population Genetics and Antihelminthic Resistance
When the host population is small, the offspring of the parasites within one particular host 

are more likely to reinfect the same host than if host population is large. As a result, smaller host 
populations increase inbreeding in the parasite population, which increases homozygosity and 
therefore will promote antihelminthic resistance if this is a recessive trait.36 If infection is clumped 
and clumps represent collections of larvae whose parents all live in the same host, then these hosts 
will be more genetically homogeneous than the parasite population as a whole.37 As discussed in 

enhance the production of rare homozygous offspring.

Stability and Population Cycles
Rosà et al12 used individual based simulations to extend their study of host-parasite interac-

in reference 11. They found that, when host populations were of the order of 100 or more, the 
mean population sizes were similar to the predictions of the hybrid model. They also found that 
the processes which stabilised population dynamics in the deterministic approximation would also 
tend to stabilise stochastic populations. However, they found that the populations would often 
exhibit sustained cycles even when the deterministic approximation predicted damped cycles.
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Conclusion
In this chapter I have focused on the mathematical techniques which can be used to analyse 

stochastic models of helminth population dynamics. In fact, stochastic population modelling is in-
creasingly performed by computer simulation, a trend which will no doubt continue. The strength of 
simulation models is that they can be made arbitrarily flexible and complicated. For example, spatial 
variation in the force of infection can straightforwardly be incorporated into a simulation model. 
Even when an analytical approximation would be appropriate (e.g., a hybrid approximation if there 
are many hosts), it may give few advantages over a simulation model if one only needs numerical 
results for specific parameter values and indeed the mathematical method may be slower at producing 
results. Stochastic simulations are very useful for making predictions provided that the parameters 
are known. However, it can be very tricky to fit these parameters to data and the noise in simulation 
output can give the illusion of biological realism. As with any model, it is important that simulation 
models are validated against the real world before trusting their predictions.

Nevertheless, I believe it would be a mistake to dismiss mathematical analysis as impractical or 
unnecessary. Mathematical analysis can elucidate robust principles and generalities which are opaque 
from black-box simulation models. An example of the sort of insight which can be obtained from 
analysis is the condition for aggregating processes to stabilise host-parasite interactions (see sections 

Immunity and host heterogeneity are two phenomena which are important determinants of 
patterns of infection, yet which are difficult to measure directly. In many cases, acquired immunity 
is thought to increase with the host’s cumulative exposure to infection challenge.3 However, there 
are many qualitatively similar mathematical relationships between the determinants of immunity 
and its effects, while in a model one has to make a specific choice. Very few of these possibilities 
have been explored and—while they can give good qualitative3,16 and even quantitative38 agree-

formulating stochastic models of immunity—for example, in ref. 18 immunity is assumed to be 

Intrinsic host heterogeneity and demographic stochasticity are additional confounding factors19 
and bring additional parameters which need to be fitted to data. These uncertainties reduce the 
power of models to make quantitative predictions.

Analytical methods have another advantage over individual-based simulation models, beyond 
their ability to bring insight to a problem rather than just results. Helminth parasites can live in very 
large populations (tens of thousands of gastrointestinal nematodes can live in one sheep) and host 
populations can also be very large. A brute-force simulation, where every worm’s birth and death 
is accounted for, could be beyond currently available computer power. However, mathematically 
derived approximations can provide tools to make simulations feasible for very large systems. For 
example, a diffusion approximation for the number of parasites can allow many birth and death 
events at once but still model the demographic noise correctly.39 Similarly, mathematical expan-
sions about the hybrid approximation can take account of a large but finite number of interacting 
hosts33,40 and even model spatially explicit populations of hosts.41 Tools of this sort are under active 
development and promise to help us apply stochastic models with greater biological realism to 
understand and manage parasite populations.
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Modelling Environmentally-Mediated 
Infectious Diseases of Humans:
Transmission Dynamics of Schistosomiasis in China
Justin Remais*

Abstract

Macroparasites of humans are sensitive to a variety of environmental variables, including 
temperature, rainfall and hydrology, yet current comprehension of these relationships 
is limited. Given the incomplete mechanistic understanding of environment-disease 

interactions, mathematical models that describe them have seldom included the effects of 
time-varying environmental processes on transmission dynamics and where they have been 
included, simple generic, periodic functions are usually used. Few examples exist where seasonal 
forcing functions describe the actual processes underlying the environmental drivers of disease 
dynamics. Transmission of human schistosomes, which involves multiple environmental stages, 
offers a model for applying our understanding of the environmental determinants of the viability, 
longevity, infectivity and mobility of these stages to controlling disease in diverse environments. 
Here, a mathematical model of schistosomiasis transmission is presented which incorporates 
the effects of environmental variables on transmission. Model dynamics are explored and several 
key extensions to the model are proposed.

Introduction
A common feature of many of the most debilitating macroparasites of humans is their de-

pendence on environmental life-stages subject to dynamic climactic, ecological, hydrological 
and other conditions. This phase can be wholly environmental, where for example infected 
humans excrete parasite eggs in feces and others are exposed via contaminated food or, as in 
the case of hookworm, where contact with contaminated soil can result in penetration of the 
parasite through the intact skin. Alternatively, the environmental phase may consist of time 
spent in an intermediate host, such as a snail or fish, itself subject to heterogeneous environ-
ments. Transmission of human schistosomes involves environmental phases of both types and 
thus understanding the environmental determinants of the viability, longevity, infectivity and 
mobility of these phases is key to conceptualizing disease transmission and ultimately control-
ling disease in diverse environments.

Schistosomes enter the environment as eggs that hatch in water into a free-swimming 
miracidium that seeks a snail of the appropriate species to infect. Asexual reproduction in the 
snail produces cercariae, another free-swimming aquatic stage with a lifespan on the order 
of a day, which penetrate the intact skin of a definitive host and mature into adult worms. 
The worms sexually pair and the female lays copious numbers of eggs that are the source of 
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pathogenic response in the host. Some of these eggs find their way into the feces or urine, 
are excreted and the cycle begins again. The intermediate host, a freshwater snail and the two 
free-living aquatic stages are known to be subject to environmental stresses such as tempera-
ture1 and shear forces present in the water column.2 For S. japonicum, the species that causes 
schistosomiasis in east and southeast Asia, transmission is further complicated by the fact that 
a variety of mammals can serve as the definitive host,3 including rodents, dogs, cats, pigs and 
water buffalo, the latter of which is particularly important to sustaining transmission in the 
lower Yangtze environment.4

In China, considerable progress has been made since the 1950s controlling transmission of 
S. japonicum in humans and domestic animals. From a total of 433 endemic counties in 1959, 
the disease has been eliminated from 260 counties leaving approximately 800,000 infected 
people and another 60 million at risk.5,6 However, these represent only a small fraction of the 
worldwide total of schistosomiasis cases that the World Health Organization estimates at 200 
million, 85% of which are in Africa.7 Most of these infections are suffered by poor people, par-
ticularly children and most are preventable and treatable, although effective vaccines remain a 
hope for the future.

Where schistosomiasis transmission has been eliminated, targeted environmental modifica-
tions have often played an important role.8 Conversely, major environmental changes such as 
water development projects have often led to a sustained elevating effect on schistosomiasis 
prevalence.9 The underlying mechanisms shaping this relationship are poorly understood. An 
expansion in the preferred habitat of intermediate host snails is often implicated in these preva-
lence increases, yet few data exist to fortify this claim.10 In China, recent evidence points to the 
influence of changing water levels on intermediate host populations.11 Yet a clear mechanistic 
understanding of the processes that lead to increased disease is lacking and therefore opportu-
nities to mitigate the disease impact of water projects using engineering or design principles 
is limited.12

Schistosomes are not alone among disease systems where mechanisms bridging environ-
mental factors and epidemiological parameters have been poorly characterized. For example, 
although it has been well established that meningococcal meningitis in western Africa exhibits 
seasonal patterns, the particular causes remain uncertain and could range from low humidity to 
wind speed.13 Similarly, multiple drivers have been proposed for the seasonal nature of cholera, 
including rainfall, temperature and planktonic blooms. Yet the specific roles of these drivers 
have not been resolved and well-established dynamic features, such as the second cholera peak 
experienced in endemic regions in south Asia, have gone largely unexplained.14

Given the limited mechanistic understanding of environment-disease interactions, math-
ematical models that describe them have seldom included the effects of time-varying environ-
mental processes on transmission dynamics. Where they have been included, seasonality is 
commonly incorporated phenomenologically, using mathematical functions that are periodic 
in time and therefore describe in a generic way the seasonal variation in a parameter—a simple 
sinusoidal function is a common example. Few examples exist where seasonal forcing functions 
describe the actual processes underlying the environmental drivers of disease dynamics.15 Because 
models that incorporate seasonality are sensitive to which parameters are externally forced as 
well as the shape of their forcing, there is a pressing need to identify the actual mechanisms 
at play. These mechanisms can include seasonal behaviors of definitive hosts, environmental 
forcing of vectors and intermediate hosts, sensitivities of parasite survival in the environment 
and annual variation in host births and deaths.

Understanding the mechanisms that tie environmental change to changes in disease dynamics 
is crucial for the development of comprehensive control strategies that may be more sustain-
able and cost effective in the long run. For the case of West Nile virus, for example, simulation 
studies have suggested that concentrating pesticide spraying efforts during the spring, when 
most transmission occurs among birds, could be more effective than the current practice of 
spraying in response to human cases in the late summer and early fall when mosquito numbers 
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are already in decline.16 Ultimately, models and management practices that incorporate the 
timing of key events such as intermediate host reproduction and parasite development are es-
sential to developing more successful control strategies. Understanding these mechanisms is also 
vital for estimating the long-term impact of impending climate change at global and regional 
scales on environmentally mediated diseases, whereas current projections are, to a large extent, 
empirically-based. Indeed, it has been argued in the case of malaria, for example, that models 
which are mechanistic, based on plausible underlying drivers of the system and basic biology, 
rather than empirical relationships, are more useful for predicting and responding to, the influ-
ence of climate change.17

Table 1 summarizes the evolution from simple deterministic models, to complex spatial-
ly-explicit, individually-based models appropriate for studying re-emergent scenarios in the 
Sichuan environment, where connectivity and environmental heterogeneity structure the 
dynamics of transmission. Iterative evaluation of alternative models in the light of field data 
is the essence of the modelling process in the application presented here. Below I summarize a 
model of schistosomiasis transmission in western China which aims to incorporate mechanistic 
environment-parasite relationships, in the hopes of understanding the local determinants of 
transmission and its control in endemic settings. Spatial extensions to the model are discussed 
and an alternative, stochastic framework is proposed for application to re-emergent disease.

Modelling Schistosome Transmission
The use of mathematical models in the study of schistosomiasis dates back to the 1960s, 

when a four-parameter model was first proposed and used to explain the dynamics of endemic 
disease.18,19 Since then, a number of models have been developed and used to explore the bio-
logical and epidemiological characteristics of schistosome species and their hosts, with a ma-
jority of them focused on S. mansoni and S. haematobium20-28 and a few on S. japonicum.29,30 
This literature has three notable characteristics, it is explanatory rather than predictive, it is 
focused on phenomenological and, thereby, generalizable aspects of disease transmission and, 
for the most part, it has relied on analytical rather than computational methods of analysis. 
Koopman31 has written of the successes and limitations of these models in general and where 
they fit into a more comprehensive mathematical approach. Thus far, these models have had 
a very limited impact on field studies and control programs.27,32 One reason for this is the 
difficulty in adapting models to site-specific conditions, such as local climactic factors and 
intermediate host dynamics.

To date, we have used a model33 of schistosomiasis transmission for our work in China with 
tactical rather than strategic objectives. Our focus is on site-specific transmission and the issue of 
selecting from the limited array of feasible control modalities that are effective and sustainable 
in a particular village. This is because Chinese experience, as well as our recent investigations, 
has clearly shown considerable variability in the prevalence and intensity of human infection in 
villages with similar agriculture but that are geographically proximate.34 Hence, we regard the 
model as a platform for the synthesis of general knowledge of the mechanisms of disease trans-
mission, quantitative estimates of biological parameter values and the local factors influencing 
transmission. To that end, the model has been extended to incorporate additional phenomena 
and additional data. Here, I build on the underlying model structure and parametrization de-
scribed elsewhere,33 incorporating the influence of additional environmental phenomena.

The Model
The structure of the delay-differential equation model is shown schematically in Figure 1. 

Three state variables are tracked in the model, worm burden in each risk group, the density of 
susceptible snails in each environment and the density of infected snails in that environment. 
Here risk group refers to occupational subgroups known in this region to exhibit pronounced 
differences in the timing, intensity and location of water contact and corresponding infection 
levels, including farmers, students and others, the latter including domestic workers, teachers, 
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etc.33 Environment refers to the land in which a risk group lives and farms. Hence, for each 
occupational group, i, living in environment k, the mean worm burden is given by the solution 
of the state equation:

dw
dt

e S t C t f w wik
i w ik w ik w

w w

k� � � ��� � � � �� � ( ) ( ) ( ) iik t( )  (1.1)

where
Si(t) is the water exposure index of occupation group i and reflects the seasonal variation in 

water contact;
e-�w�w is the fraction of worms surviving the development time in humans;
� is the number of parasites acquired per cercaria per m2 skin surface contact;
f (wik) is the density dependent worm establishment function which describes a process 

in which the likelihood of developing into an adult worm is assumed to be reduced 

or both;
�w is the worm mortality rate; and
Ck(t  �w) is the mean spatial density of cercariae in irrigation system k at time t  �w. The 

time delay is due to the fact that the rate of change in the number of adult worms at time 
t is due to exposure to cercariae at time t  �w where �w is the worm development period 
in human hosts.

Modelling Cercariae-Environment Interactions
Cercariae are the free-living aquatic stage of the parasite which can infect humans and other 

mammals. They are negatively geotropic and positively phototropic, thus cercariae accumulate 
at the surface of water where they seek an appropriate mammalian host. They are highly suscep-
tible to environmental stressors, including desiccation, turbulence in the water column, water 
temperature, aquatic chemistry and light.2,35-39 Water temperature and flow are key determinants 

Figure 1. Diagram illustrating the structure of a multi-risk group model incorporating field data 
as both inputs and outputs. The host population is divided into i groups and the environment 
partitioned into k environments.
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of cercarial viability and thus Ck(t) is dependent on the infected snail population as modified 
by these environmental factors:

C t I T
r t
A

A z tk c
c

s
h k( ) ( )

( )
( )� 1 �  (1.2)

where
Ic(T1) is the temperature-dependent infectivity of cercariae, described below;
T1 is the surface water temperature, measured directly using an automated logger, or 

estimated from air temperature using a model described below; and
As is the nominal surface water area of the village irrigation system;
rc(t) the precipitation-and/or irrigation-dependent modulation of the average daily 

cercarial production [�Ahz(t)] which enters the aquatic environment, defined briefly 
below and in detail elsewhere;40

� is the cercarial production per infected snail per day;
Ah is the area of snail habitat;
zk(t) is the infected snail density.

Temperature-Dependent Cercarial Activity
Cercarial activity, including host-seeking, surface seeking, host penetration and survival are 

known to be temperature sensitive. Experiments that examine the influence of temperature on 
successful penetration and establishment in animal hosts reveal the combined effect of temperature 
on multiple activities.35 Cercariae exposed to temperatures between 15 and 30 degrees C show 
the highest worm recovery rates from mouse hosts. Above and below this range, recovery rates 
decrease, resulting in the annual infectivity cycle depicted in Figure 2 using temperature data for 
the Shian 5 study village in 2004. This relationship is incorporated in the model as Ic(T1), the 
temperature-dependent infectivity of cercariae, serving as one source of seasonal limitation of 
transmission in the framework presented here.

Flow-Dependent Cercarial Activity
Cercarial production is modulated by the availability of water in channels, rc(t), which can 

be predicted from precipitation and temperature using a conceptual rainfall-runoff model, 
IHACRES,41,42 described elsewhere40 and modeled following the simple binary formulation:

Figure 2. Daily cercarial infectivity for one year (2004) in Shian 5 as determined by water 
temperature following Upatham et al.35
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r t
q
qc
t c

t c

( )�
�

�

�
�
�

��

0
1

�

�
 (1.3)

where qt is the normalized, IHACRES-predicted channel discharge at time step t; and +c is the 
discharge threshold for cercarial release. If flow falls below the threshold for cercarial release, then 
rc(t) � 0, effectively prohibiting cercarial penetration of hosts. When the flow threshold is met 
or exceeded, rc(t) � 1 and transmission proceeds unimpeded. Thus, during and after rain events, 
when flowing water is available, cercarial dispersion and penetration can occur. This formulation 
is consistent with the ecology of Oncomelanian snails, which reside above the waterline but are 
submerged and shed cercariae when channel flows rise.43 A sample classification of daily rc(t) in 
one study site for the year 2003 is given in Figure 3.

Modelling Snail-Environment Interactions
Models of schistosome intermediate hosts have typically explored a limited number of 

functional forms and environmental variables, such as Woolhouse and Chandiwana44 and 
Woolhouse,45 who selected simple nonlinear models relating water temperature and B. globo-
sus recruitment and linear models relating mortality and water temperature. Woolhouse and 
Chandiwana46 adapted their previous model44 for flowing water environments, adding the effect 
of high rainfall. In contrast to the intermediate hosts of African schistosomes, modelling of the 
Oncomelania hupensis host of S. japonicum is rare.

Figure 3. Polar plot of annual (2003) daily water flow classifications as predicted by the 
IHACRES hydrological model. Symbols (&) represent “transmission days,” days with sufficient 
channel flow to allow for egg hatching and the coincidence of water contact and cercariae. 
Reprinted with permission from: Remais J, Liang S, Spear RC, Environ Sci Technol 2008; 
42(7):2643-2649. © 2008 American Chemical Society.
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O. hupensis snails are amphibious, inhabiting irrigation canals, riparian zones and littoral envi-
ronments. The vegetation in these sites serves to maintain a suitable microenvironment, including 
temperature and humidity, as well as providing food and refuge resources. Juveniles are submerged 
during early stages of development, while adults are often found above the water line on vegetation 
and on shaded moist soil. Adults persist under environmental stress by closing their shell opening 
with a maneuverable operculum, allowing for aestivation and making them somewhat resistant 
to dry conditions.47,48

Liang et al33 previously used a temperature-dependent recruitment model coupled with constant 
annual mortality to model seasonal abundance fluctuations of O. hupensis, but no direct measure-
ments of recruitment, mortality or environmental variables were made to construct this model. 
Others have shown that O. hupensis is highly sensitive to seasonal weather conditions including 
flooding, temperature and humidity.5,43 In response to these sensitivities, another study49 used 
a mark-recapture technique to directly measure birth and mortality processes under changing 
environmental conditions, finding temperature and heavy precipitation to be most influential in 
determining abundance. A validated population model for O. hupensis was presented, suitable for 
predicting snail abundance in changing environments. In this model, the susceptible snail state 
equation is defined as:

dx
Ek

x t t k x t kdt
g t t x t t h t E x t

x
� �� � � � � � � �

�, ( ) ,  (1.4)

where population gains in environment k are accomplished by the recruitment term g t t Ex t tx
�� ��, ,  

lagged by a temperature-dependent development time, tx, required to reach mature size (estimated 
for O. hupensis elsewhere50) and losses are accounted for by mortality term h t Et( , ), where Et is a 
vector of environmental variables at time t. Submodels g and h are defined as follows, with model 
fitting and parameters described in detail elsewhere:49

g t t ex t t

T t t
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where T(t  tx) is air temperature and R(t  tx) is a count of rain events �15 mm per month at time 
t  tx and �1 6 are fit parameters; and

 (1.6)

where T(t) is air temperature, R(t) is a count of rain events �15 mm per month and �1 5 are fit 
parameters.

Fits of submodels g and h to environmental data are shown in Figure 4. Notice that the suscep-
tible snail state equation is not dependent on other, endogenous transmission model state variables. 
Consequently, the susceptible snail model can be calibrated independent of the full transmission 
model, thus economizing the computation required for calibration, described further in the chapter 
by Spear and Hubbard in this volume.

State variable zk(t), the density of infected snails in environment k, is given by the solution 
to:

dz
dt

e x tk
k k z k

z z T M t zz z� �
� � �� � �� � � �( ) ( ) ( )1

 (1.7)
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Figure 4. A) Relationship between instantaneous per capita recruitment rate for O. hupensis 
robertsoni and mean air temperature and mean number of rainfall events �15 mm (month–1). 
Climate data are lagged by ts as discussed elsewhere.49 B) Relationship between instantaneous 
per capita mortality rate for O. hupensis robertsoni and mean air temperature and mean number 
of rainfall events �15 mm (month–1). Reprinted with permission from: Remais J, Hubbard A, 
Wu Z, Spear R. J Appl Ecol 2007; 44(4):781-791. © 2007 Blackwell Publishing Ltd.
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where
xk(t) is the density of susceptible snails in environment k;
# is the fraction of those miracidia which successfully infect snails;
� is a parameter representing the degree of spatial convergence of the distribution of snail 

hosts and miracidia;
�z is the mortality rate of infected snails; and
Mk(t) is the mean density of miracidia in the irrigation system in environment k, derived 

from hatched eggs, a process described below.
The implications of an environmentally-driven snail model are shown in Figure 5 using a 

transmission model previously calibrated for Shian 5, described in detail elsewhere51 and in the 
chapter by Spear and Hubbard in this volume. The spring snail population peak generated by the 
model leads to significant infected snail numbers earlier in the year when compared to the model 
used by Liang.33 As a consequence, the onset of peak cercarial release into waterways is shifted 
back by more than a month, from late September to mid-August, a prediction that is in line with 
available cercarial concentration data from field studies in Shian 5.52 Comparisons to field data 
of this sort can highlight how environmentally-driven intermediate host models can bring model 
performance into better agreement with real world observations.

Modelling Ova-Environment and Miracidia-Environment Interactions
Total egg production from all risk groups is modeled as:

E t h g nw wk i i i k i k w
i

i
( )    ( ,  ), ,� �

1
2

� �  (1.8)

where
h is eggs per gram stool (EPG) per worm pair based on Hubbard et al;53

gi is the average stool production of a member of the ith group;
ni is the number of people in ith group whose stool is used as fertilizer;
�( , ),Wi k wi

�  is worm mating probability following May54 and described elsewhere.33 
The factor 1

2  converts mean worm burden to worm pairs.

Figure 5. Mean of 1000 simulated predictions of daily cercarial output in a simulated village 
(Shian 5) generated using the temperature- and precipitation-driven snail model (–) of Remais 
et al49 and the model (----) used by Liang et al33 Symbols (&) are mean worms recovered from 
mice (n � 94) deployed in 2001 in Shian 5 as reported by Spear et al.52
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Before hatching into miracidia, excreted eggs are subject to environmental stress. They are 
resilient, however and can persist for days on fields before being washed into irrigation channels 
by a precipitation event.40 A composite parameter representing on-field inactivation of eggs can 
be calculated from literature values of egg resilience and a simple first-order inactivation process 
can be used to express viable eggs, E*(t), as a function of the sum of decaying eggs contributed 
since the last flow event:40

E t E t ek k
T t

T

T
d* ( )    ( ) ( )� � �

�
� �

��

 (1.9)

where
Ek

*(t) is the sum of viable eggs shed by infected humans in environment k since the last 
flow event;

E(t) represents eggs excreted into environment, defined above;
.d is the decay constant governing inactivation of eggs lying dormant on fields between 

flow events;
T – �E is the time since last flow event.

Miracidia are short-lived, free-swimming and are drawn to light, accumulating near the 
surface of water where they seek an appropriate snail host. They are sensitive to water tempera-
ture and aquatic chemistry, with the former exerting a pronounced influence on viability.1,55-57 
Experimental data of the influence of temperature on miracidial infectivity have shown optimal 
activity between 15 and 30 degrees C,58 a relationship incorporated into the model of the net 
effective density of miracidia in environment k, Mk(t), a function of viable eggs in the environ-
ment, Ek

*(t):

M t I T
r t
A

E tk m
e

s
k( )    ( )

( )
( )� 1 � *  (1.10)

where
Im(T1) is the surface water temperature dependent miracidial infectivity to snails analogous 

to Ic(T1) discussed above for cercariae;
As is the nominal surface water area of the village irrigation system;
re(t) is the precipitation-and/or irrigation-dependent modulation of the average daily 

miracidial production [�E(t)] which enters the aquatic environment, defined briefly 
below and in detail elsewhere;40

� is the fraction of the total daily egg production of infected villagers returned into the 
environment as fertilizer, adjusted for the presence of sanitation.

Flow events provide opportunities for viable eggs to hatch and I therefore define re(t) analogous 
to the cercarial equation at time t as:

 (1.11)

where qt is the normalized, IHACRES-predicted discharge at time step t, as above. Here, if water 
flow falls below the threshold for egg hatching, +e, re(t) � 0 and eggs lie dormant. When the flow 
threshold is met or exceeded, re(t) � 1 and viable eggs on fields are washed into the irrigation system, 
where they hatch and can infect snails.

Model Parameters
The model was structured and parameterized to allow the use of as much of the field data as 

can be feasibly collected with the methods available in rural China. This includes environmental 
data (described below), cross-sectional data on snail population density, seasonally varying water 
contact patterns by group and survey data on the intensity of human infection. Some of these 
data are inputs to the model and some are used for parameter estimation. The issue of parameter 
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estimation is complex but central to our approach. Table 2 lists parameter values for the model 
and their literature sources. When used to study interventions (discussed in detail in the chapter 
by Seto and Carlton in this volume), a fundamental challenge is to reduce the residual uncertainty 

Table 2.  Parameter ranges and environmental inputs for transmission model 
following Liang et al.51 The distribution for all parameters is uniform except 
for log-uniform distribution for �, # and �s. Data estimates marked * are 
available in Table 4 in Liang et al.51

Parameters Interpretation and Unit Ranges References

Biological

�w Development time of worms in human host (day) 20-40 59

�w Worm natural mortality (/day) 0.000183-0.0014 59

h Eggs excreted (/worm pair/gram feces) 0.768-2.72 53

�z Patent and latent snail death rate (/day) 0.0063-0.033 60

� Cercarial production (/sporocyst/day) 20-50 61,62

hPZQ Efficacy of praziquantel 0.8-0.95 63,64

DD1 Degree-days for sporocyst development 1550-1950 65

TD1 Threshold temperature for sporocyst develop-
ment (˚C)

12-15 62

� Schistosome acquired (/cercaria/m2 contact) 0.0001-0.5 -

# Intermediate host infection (/miracidium/m2 
surface water)

0.000001-0.0005 -

�1 6 Intermediate host recruitment parameters See ref 49

�1 5 Intermediate host mortality parameters See ref 49

Site-specific

w0i Initial worm burden in the ith group Data estimate* Local data

Z0 Initial density of infected snails Data estimate* Local data

Si(t) Water contact index Data estimate* Local data

x0 Initial density of susceptible snails Data estimate* Local data

�0i Initial worm aggregation parameter Data estimate* Local data

x0 Initial mean snail density 17-35 66

�i Spatial index for the distribution and interaction 
between exposure and cercariae for ith group

Data estimate* Local data

� Spatial index for the distribution and interaction 
between snails and miracidia

1 -

Inputs

T1 Water temperature (˚C) No constraint Local data

T2 Snail microenvironment temperature (˚C) No constraint Local data

Cchemo Chemotherapy coverage Data estimate* Local data

P Rainfall (mm/day) No constraint Local data

r(t) Precipitation-driven channel flow (binary) Data estimate 40
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in model output, or its behavior more broadly, after as much of the local data as possible has been 
utilized to narrow the posterior distributions of the parameter values (see chapter by Spear and 
Hubbard in this volume).

To that end, we have conducted a variety of field studies to better understand the importance 
of certain elements of the model, or to obtain parameter estimates relevant to the biology of the 
snail or parasite specific to the region in which we work. Examples are the value of the parameter 
describing the production of parasite eggs per mated worm pair per gram of stool,53 the importance 
of rainfall in determining infected snail densities and the concentration of cercariae in irrigation 
water.52 There is no question that the modelling approach, with the ultimate objective of designing 
effective intervention strategies to meet public health objectives, has led us to seek quantitative 
estimates of factors controlling disease transmission that have not been of great interest to Asian 
parasitologists since the work of Pesigan.67

Environmental Data
Modelling the environmental drivers of seasonality requires an accurate dataset of environmental 

variables, acquired by measurement where possible and prediction where not. As in all environmen-
tal monitoring, strict quality assurance measures need be taken, including instrument calibration/
certification, statistically valid sampling designs, reference sites and data verification.68,69 In the work 
described here, air temperature, barometric pressure and relative humidity are collected relatively 
easily throughout the study region using continuous loggers (Hobo Onset H21-002) sampling at 12 
minute intervals, validated with regional data available from the National Climatic Data Center.70 
Likewise, water temperature and water column height (stage) are logged at the same interval using 
similar equipment (Hobo Onset U20-001-01, U22-01) in a representative sample of irrigation 
channels. To estimate flow (m3 s 1) from stage (m) in these channels, flow measurements must be 
made at multiple flow volumes in order to construct a simple rating curve. Daily precipitation is 
collected using a combination of tipping gauges (Hobo Onset RG3-M) and manually read rain 
gauges. Where data were missing due to equipment or staff error (typically accounting for «1 
percent of data points in the study), data were obtained from the NOAA weather station located 
at the Xichang municipal airport (World Meteorological Organization ID 56571), approximately 
13 km from the study sites. Where water temperature was not directly measured, it was estimated 
from air temperature using a standard, simple linear model:71

T t T tw a( ) ( )� �� �  (1.12)

where Tw � water temperature, Ta � air temperature and � and � are fit parameters. Time lags were 
excluded from the model as the observed lags (!4 hours) were much shorter than the averaging 
period (1 day), as is typical for temperature predictions in shallow channels.72

Model Dynamics
The model described above, when parameterized as described in the chapter by Spear and Hubbard, 

generates predictions of the sort depicted in Figure 6. Mean worm burdens for the three risk groups 
in Shian 5 are summarized for 1000 simulations over the five year period 2001-2005. The impact 
of two chemotherapies, modeled as described in the chapter by Seto and Carlton in this volume, is 
shown in the Figure. One characteristic that can be explored using this simulation environment is the 
time-to-return for worm burdens after chemotherapy. As is evident in the plot, worm burden returns 
to precontrol levels in the farmer group in less than 3 years, while the student and other group require 
considerably more time to rebound, owing to their differing exposure profiles.

The seasonal rise in worm burden following the second simulated chemotherapy can be seen in 
Figure 7 which plots the acquisition (or loss by mortality) of worms in the three risk groups. Note 
that the acquisition of new worms in the Figure represents exposures to cercariae that took place as 
many as 6 weeks prior. Notable is the bimodal farmer pattern which results from exposures during the 
spring planting season. While similar activities occur during the late winter and early spring during 
the harvest of the winter crop, cercarial shedding and infectivity is limited in this period due to 
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low temperatures and limited precipitation. During the spring planting, however, temperatures just 
exceed the limits for cercarial activity and spring rains provide opportunities for the coincidence of 
cercariae and water contact. The timing and nature of interventions can be selected based on these 
seasonal patterns, as described in the chapter by Seto and Carleton in this volume.

coincidence of temperature decreases, lower snail numbers and reduced water contact activities. The 
time-varying I(T), r(t) and s(t) terms are at their minimum values in the late fall through winter 

is to explore the effects of these gating functions73 on the transmission process and their sensitivity 

Figure 6. A 5-year prediction of 1000 simulated time profiles (line: mean; envelope: 25th and 
75th percentiles) of mean worm burden for each of the three risk groups in Shian 5 following 
two chemotherapies (coverage based on field data).

Figure 7. The derivative of worm burdens following the second chemotherapy in Figure 6, 
representing the rate of worm acquisition or loss (expressed as epg/d).
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to local and regional environmental changes. Furthermore, efforts are needed to extend the model 
to account not just for environmental variables, but for their spatial distribution.

Modelling Spatial Connectivity
Human schistosomes are model organisms for the study of and response to, the spread of 

disease in space and time, as their transport through the environment takes place along discrete 
pathways. Parasites are carried in advective flows along canals and streams as both larvae and ova. 
Within intermediate snail hosts, parasites are conveyed among and between aquatic and riparian 
habitats and as adult worms, human and animal hosts serve as the transport mode. With respect 
to the S. japonicum parasite, I term these flows parasite diffusion, using the phrase to encompass 
all diffusive pathways along which parasites are transported into new and existing locales. The 
presence of suitable pathways can affect the probability of emergence of transmission, the level 
of worm burden within a community once transmission is established and how transmission 
spreads to neighboring areas. What is more, the degree to which an endemic or emergent com-
munity is connected can have important implications for the efficacy and sustainability of various 
control strategies.

In a preliminary exploration of parasite diffusion, the travel time of the free-swimming forms of 
the parasite or snail larvae due to advective transport in typical irrigation systems was estimated,74 
showing empirically that there is significant transport of viable parasite larvae within irrigation 
channels and that transport of larval stages occurs over considerable distance, with viable organ-
isms detectable as far as 400 m from source snails.38 Using these key transport parameters in a 
follow-up project, the impact of larval transport on endemic disease transmission was assessed 
using a spatial-temporal model of networked villages,75 showing that diffusion of larvae via the 
surface water pathway, on its own, influences not just the intensity of transmission in a village, 
but also the effectiveness of standard interventions. Such a model allows us to better understand 
a number of phenomena specific to the endemic situation, such as which villages serve as “sinks” 
in the network, villages where worm burden can accumulate because they lie at the bottom of a 
watershed of numerous connected upstream villages.

The implications of a connected landscape have been explored extensively in ecology, where 
metapopulation models76 describe the effect of migration between connected patches on popula-
tion conservation. Likewise, environmental and social connections can promote the persistence 
of schistosomiasis and challenge efforts to control transmission. While hydrological connectivity 
is relatively straightforward to characterize, social connectivity is considerably more difficult to 
measure and express mathematically. The indirect transmission of schistosomiasis differs from 
recent epidemiological modelling of social connectivity and contact networks for communicable 
disease spread.77-83 Within the context of the endemic transmission situation, small-scale human 
mobility can spread parasites from village to village. This effect may be small though in compari-
son to other social behaviors, such as the renting or selling of water buffalo which, if infected, can 
potentially release much larger numbers of eggs into the environment. While these factors might 
be modeled much like hydrological connectivity over the small scale via inter-village flows, they 
differ from the hydrological situation in that these processes can occur over much larger spatial 
scales and much less predictably. While difficult to estimate precisely, we look to future field data 
to inform the probabilities that define the movements of heterogeneous hosts; much theoretical 
and empirical work is needed in this area.

Extending the Modelling Framework
Our current research attention has shifted from endemic disease to disease re-emergence, a 

phenomenon we have documented in the mountainous region of Sichuan Province.84 For study-
ing re-emergence, human infection may be more appropriately modeled by risk groups with 
stochastic parasite establishment in a heterogeneous environment. The simplest form would 
be a stochastic compartmental model, where the risk group structure would be maintained 
with each compartment being comprised of a number of identical individuals. However, the 
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static representation of the aggregation of parasites in humans in the deterministic model, even 
within our risk groups, does not translate easily to the re-emergent situation where, initially, the 
population is parasite-free. Hence, an individually-based model is preferred.31 Individual-based 
micro-simulation models have been utilized in studying schistosomiasis transmission in endemic 
settings, but without our emphasis on environmental factors.85 In ecology there has also been 
considerable interest in individually-based models.86 There, the analog to our discrete population 
of humans is a population of animals in a heterogeneous, but continuous environment. There 
are particularly interesting approaches being explored which might allow us to naturally utilize 
our GIS data base and GPS-based maps in an individually-based model.87

Figure 8. A diagrammatic conceptualization of the re-emergence model. The frame of reference 
of the flowchart is the interaction of one individual with the ditch environment. Stochastic 
introduction processes include host migration and import of cercariae and miracidiae, while 
cercarial exposure, egg distribution and hydrologic transport processes are implemented on 
a spatially-explicit, segmented mapping of the ditch environment.
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Figure 8 schematically represents the elements of a new model in which the stochastic in-
troduction of parasites is implemented by means of migration of infected hosts and advective 
parasite transport. Heterogeneous ditch environments, then, serve as platforms wherein eggs are 
released from infected individuals who, along with uninfected individuals, traverse the waterway 
environments and are potentially infected by contact with cercarial contaminated water. Stochastic 
implementations of the egg release and cercarial exposure processes are particularly suitable for a 
system where transmission is strongly conditioned by both environmental and behavioral factors 
that defy deterministic formulation. Moreover the stochastic model proposed here provides the 
structure to capture the potentially large influence of chance events that have been recognized to 
govern early epidemic dynamics, even in relatively large populations.88-90

Conclusion
The wide array of processes discussed herein can be conceptualized at various spatial and 

temporal scales, evaluated for their relative abilities to capture relevant transmission dynamics, 
including seasonal dynamics, and incorporate available field data. Measuring the potential drivers 
of seasonality may be relatively straightforward in the case of climate, but measuring and formal-
izing patterns of human behavior, particularly in a spatially explicit context, remain formidable 
challenges.91 Indeed, iterative evaluation of alternative models in the light of field data is the es-
sence of the modelling process in our application. Ultimately, quantifying and synthesizing the 
interaction between environmental and social determinants in transmission models offers great 
promise for developing novel modes of control in diverse environments.
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Abstract

The use of mathematical models for developing management options for controlling  
infectious diseases at a local scale requires that the structure and parameters of the model 
reflect the realities of transmission at that scale. Data available to inform local models are 

generally sparse and come from diverse sources and in diverse formats. These characteristics of 
the data and the complex structure of transmission models, result in many different parameter 
sets which mimic the local behavior of the system to within the resolution of field data, even for 
a model of fixed structure. A Bayesian approach is described, at both a practical and a theoreti-
cal level, which involves the assignment of prior parameter distributions and the definition of a 
semi-quantitative goodness of fit criteria which are essentially priors on the observable outputs. 
Monte Carlo simulations are used to generate samples from the posterior parameter space. This 
space is generally much more constrained than the prior space, but with a highly complex mul-
tivariate structure induced by the mathematical model. In applying the approach to a model of 
schistosomiasis transmission in a village in southwestern China, calibration of the model was 
found to be sensitive to the effective reproductive number, Reff . This finding has implications 
both for computation time for the Monte Carlo analysis and for the specification of field data to 
efficiently calibrate the model for transmission control.

Introduction
The theme of this book, the use of mathematical transmission models for the management 

and control of parasitic disease, carries the implicit assumption that the parameters of the model, 
as well as its structure, are directly applicable to the environment in which transmission is to 
be managed. While models have been used to great effect to elucidate the social and biological 
phenomena central to the patterns of disease on large spatial and temporal scales,1 this has rarely 
been true for developing control tactics in local environments where the devil is in the details. The 
challenge is to use local data to tailor the model to reflect local conditions to a degree adequate 
for informing control tactics at that scale. In this chapter we propose a particular approach that 
was developed in the context of environmental models, mainly in hydrology and recognizes that 
the relevant data for model calibration are diverse and come in many formats and with varying 
degrees of confidence in their accuracy and precision.2

In this volume it can be seen that mechanistically-based models are particularly well suited 
for the analysis of the transmission dynamics of infectious diseases. A major reason for their 
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popularity is that the structure of the model reflects known processes and mechanisms that 
underlie the observable features of disease transmission. However, mathematical models often 
become complex as they expand to incorporate more mechanistic detail and the default is often 
to include more detail rather than less.3 It is generally a major challenge to match the appropriate 
level of detail of the model to the purposes of a particular study.

The complexity of mechanistically-based models is in contrast to purely statistical models which 
are aimed at efficiently summarizing relationships between variables in a particular set of data by 
utilizing more general and mathematically simpler structures. Both statistical and mechanistic 
mathematical models include sets of parameters whose values must be specified in order to use 
the model for subsequent forecasts or analyses. Parameter estimation is central to the statistical 
modelling process in the sense of finding parameters that result in best fits to the specific data set 
about which the analysis revolves. In contrast, there is often prior information on the values of at 
least a subset of the parameters of mechanistically-based models independent from the particular 
application at hand. Further, some of the parameters of mechanistic models can often be esti-
mated by independent experiments conducted before or during the modelling project. Hence, 
a mechanistically-based model can be thought of as a platform for the merging three types of 
information on the processes being modeled:

the different processes and variables are inter-related (the structure of the model);

laboratory or field experiments (prior information on the model parameters);
-

pendent on a subset of the state variables of the system).4

The challenge is to merge these three types of information with the objective of identifying 
effective management options to diminish disease transmission. This goal immediately places 
some constraints on the spatial and temporal scale of the processes under analysis as well as the 
nature and format of data available to inform the model both qualitatively and quantitatively. 
For example, there is an important subset of disease transmission models that implicitly depend 
on, although seldom acknowledge, environmental factors like air temperature or water avail-
ability. Hence, an important determinant of spatial scale concerns the relationship between the 
human population subject to infection and the spatial homogeneity or lack thereof in these key 
environmental variables. In some cases the land of a single village may be the relevant environ-
ment and in others a set of villages may be more appropriate, for example, if they lie within a 
connected and relatively homogeneous patch of vector habitat. Temporal scales range from days 
and weeks in the case of disease outbreaks to months and years for tracking the prevalence or 
intensity of endemic disease.

Ideally the model structure and scale are well matched to the data set available for analysis. This 
may not be the case in that data collection is often dictated by political boundaries and logisti-
cal considerations rather than the realities of the transmission processes. The underlying issue is 
one of connectivity which is easily understood by noting that it is not effective management to 
suppress transmission in one village if its neighbors continue to harbor ample infected people 
and/or vectors and the pathways exist to reintroduce them into the controlled village at the first 
opportunity. In any case, the nature and quantity of the problem-specific data strongly condition 
the approach to parameter estimation/calibration. Therefore, we now sketch the characteristics of 
data we postulate to be typically available for use in the management of environmentally-mediated 
infectious diseases.

Local Data
The local data relevant to understanding the transmission dynamics of infectious diseases in 

human populations can be roughly divided into two categories which we shall term survey data 
and monitoring data. Monitoring data are defined as those data that are collected routinely at 
locations within the geographical area of interest and at regular time intervals. Environmental 
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temperature and rainfall amounts are the most commonly available data of this sort. Survey data 
are those acquired over particular time periods of intensive investigation or, alternately, episodically 
as resources become available. In the developing world, prevalence or intensity of infection in the 
human population or the abundance of vectors or intermediate hosts are examples of survey data 
whereas, for reportable diseases in the developed world, such data may be classified as monitoring 
data if it is reliably summarized in weekly or monthly reports.

From a modelling perspective, the essential difference between monitoring and survey data is 
that the former are amenable to time series methods of summarization and analysis of which a great 
many are available.5,6 However, when addressing the issues of management and control of disease 
transmission in the developing world, time series data are seldom available on the key variables 
and processes of interest beyond the weather. For the most part, what is known of these variables 
is available only via survey data. Hence, time series models may be useful submodels of larger 
mechanistic simulation models of the overall processes of interest, but the data to be “fit,” i.e., the 
outcome data that define the likelihood, are generally survey data. Moreover, survey data are often 
from surveys of different sorts collected at different times and places within the region of interest 
making it is very difficult to generalize about the nature, structure, or amount of such data. Hence, 
approaches to parameter estimation that depend on specifically structured data, e.g., monitoring 
data, are of limited utility in disease management analyses typical of the developing world.

A second general characteristic of the data available to inform model parameterization and 
calibration relates to transferability, or lack thereof, from village to village or region to region. It is 
useful to distinguish between two data types in this context, site-specific data and what will be called 
biological data, that is, data specific to the disease, the infectious agent, its vectors, or intermedi-
ate hosts that can be assumed to apply to host and/or vector populations that reside or range over 
extended geographical areas. For example, the average number of eggs produced per day by an adult 
female schistosome within a human host should not vary locally, but might over longer distances 
or between genetically isolated parasite populations. The importance of the distinction between 
site-specific and biological parameters is that estimates of biological parameters obtained from one 
site can, in principal, be transferred to a second area within the same ecological zone whereas this is 
not often the case for site-specific parameters related to local agriculture or water availability.

Neither the biological nor the site-specific parameters of a well-developed disease transmission 
model will ever be known precisely. Even with the most mathematically tractable models and copi-
ous time series data, the best one can hope to achieve are a set of parameter estimates but also an 
estimate of the residual uncertainty in their values. The attractive possibility, however, is that as 
the model is applied to new situations the residual uncertainty in biological parameter values, as 
reflected in a statistical distribution that characterizes the current information about a parameter, 
will continually narrow. This possibility calls out for a Bayesian approach to the parameter estima-
tion problem. For a number of years, we have utilized a particular approach that is well suited to 
the nature and amount of data available in disease transmission studies. As originally formulated 
the approach was admittedly ad hoc, but understandable and practical. It has been widely applied 
and extended, mainly in the field of hydrology.7 More recently we have recognized that this ap-
proach can be subsumed under a more general framework termed Bayesian Melding by Poole and 
Raftery.8 Here the procedure will be described in its practical context and later summarized more 
generally using their terminology.

In short, the procedure begins with the selection of a specific model structure and the speci-
fication of statistical distributions describing the uncertainty in each constant model parameter 
including, perhaps, those of time variable functions like the temporal pattern of exposure as driven 
by agricultural activity. The model structure and parameter distributions describe an ensemble of 
models which are then studied via Monte Carlo methods. The third element of the approach is 
the specification of a set of criteria to assess the performance of each model realization against the 
field data, that is, a measure of the goodness-of-fit. However, here goodness-of-fit is defined quite 
generally and can be based on any observable feature of the model’s output, for example the timing 
between events, or by requiring that a state variable lies in some plausible range at certain times. 
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Because field data are often imprecise or approximate, it is sometimes unwise to overemphasize 
fits to point estimates. In earlier studies, this concern led to a binary criterion of fit, pass/not-pass, 
where passing implies that a particular simulation run was judged to mimic the essential features 
of the field data.2,9 In this variant of the method, each parameter vector associated with passing 
or not-passing simulations is saved for subsequent statistical analysis. The Bayesian nature of the 
approach can be seen by recognizing that the passing parameter vectors are samples from a mul-
tivariate posterior distribution which is generally very much more constrained than the original 
parameter distributions, the priors that were used in the initial Monte Carlo runs.

The multivariate posterior distribution of passing parameters is the concrete expression of the 
fact that many different parameter combinations can produce model behavior consistent with field 
observations. This is not an artifact of the pass/fail classification, but it implies that, in general, 
these complex models are not invertible, that is, it is generally not possible to back-calculate a 
single optimum point in parameter space that produces the best fit, at least in any traditional sense. 
Beven has written extensively about this characteristic of complex environmental models, extend-
ing it to incorporate different model structures and termed it equifinality.10 Particularly relevant 
to applications of complex models to disease control is the observation that “one implication of 
rejecting the concept of an optimal parameter set and accepting the concept of equifinality is that 
the uncertainty associated with the use of models in prediction might be wider than has hitherto 
been considered…”7

A Calibration Example
To exemplify the calibration process we propose, the model of S. japonicum transmission 

presented in the chapter by Remais is utilized in the context of exploring site-specific control 
options as discussed in the chapter by Seto and Carlton. Structurally, the model is comprised of a 
set of nonlinear differential-difference equations which track mean village worm burden in three 
groups of villagers; farmers, students and others who live in the village but who have limited water 
contact often due to non-agricultural employment outside the village.11 The rationale for dividing 
the population into three groups relates to their differences in water contact, both in timing and 
degree. The fourth state variable is the mean village density of infected snails. The delay terms are 
the development time of the parasite in the human host and the prepatent interval in snails. As 
recounted in Chapter 12, the model is in the tradition that began with MacDonald,12 but adapted to 
the epidemiological and environmental determinants of transmission in the hilly and mountainous 
areas of China. In this setting there is very limited evidence of acquired immunity as a function 
of age or infection history and very similar patterns in disease prevalence and intensity between 
adult men and women within a village.13

Including the degree-day model of snail development, the model has 10 biological param-
eters, all of which are constant and 15 site-specific parameters of which 9 are constant and 6 are 
time-varying. Examples of time varying parameters are the average water contact rate, Si(t), of each 
group of villagers over the season and the village average density of susceptible snails, X(t). The latter 
is treated as a time variable parameter rather than a state variable because, even in highly endemic 
conditions, the prevalence of infection in snails does not exceed 2%. The density of susceptible 
snails, however, is generated by an independent submodel which is driven by temperature and 
rainfall data as described in Chapter 6.

The next step in the process is to specify plausible ranges for the biological parameters from 
the literature as described in a paper on the calibration of an earlier version of the model.14 As 
discussed in that paper, there is no magic formula for assigning the prior parameter distributions. 
Some are reasonably well defined in the literature and others can only be estimated from informed 
guesses. However, there are technical reasons elaborated below that motivate the assumption that 
the individual parameter priors are uniformly distributed at least for the initial stages of the analysis 
that are addressed here. (Other distributional assumptions will be seen to require the full Bayesian 
melding procedure to properly estimate the posterior distribution as discussed below.) Similarly, 
survey data inform the initial ranges to be assigned to the site-specific parameters, for example, 
the area of snail habitat in a particular village.
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In general, the ranges for the site-specific parameters are narrower than is the case for the bio-
logical parameters. However, the price paid is that collection of the necessary site-specific data is 
often labor intensive. Again, the ranges stipulated for both types of parameters are regarded as the 
limits of uniform distributions. Table 1 contains the ranges used in the main model and identifies 
the time variable parameters used in this example. More complete listing are given in Liang et al15 
and in Chapter 6.

The particular village for the calibration example is Chaunxing Xinlong 7 which lies in hilly 
terrain in Xichang County of southwestern Sichuan Province. The village is hydrologically isolated 
from its neighbors and can be treated as a single unit, at least from the perspective of determi-
nants of its endemic level. The field data on which the criteria for passing simulations are defined 
are based on cross-sectional infection surveys in 2000 and 2002, as detailed in Liang et al14 and 
supplemented by a more recent data set from 2003-2004.15 These are survey data as defined above 
and are comprised of village-average infected snail densities, generally in the spring of the year, 
average egg excretion data among farmers and students in the winter and estimates of village aver-
age cercarial density from mouse bioassays once per month from June through August of 2001.13 

Table 1. Parameter and initial condition limits

Parameter Definition and Units Limits

Biological

�w Development delay of worms in humans (days) 20-40

�w Worm mortality rate (/day) 0.000183-0.0014

�z Infected snail mortality rate (/day) 0.0063-0.033

h Parasite egg excreted (/worm pair/gm feces) 0.768-2.72

� Cercarial production (/sporocyst/day) 0.1-5

hPZQ Efficacy of Praziquantel 0.8-0.95

DD1 Degree-days for sporocyst development 1550-1950

TD1 Threshold temp for sporocyst development ˚C 12-15

� Schistosome acquisition (/cercaria/m2 contact) 0.0001-0.5

# Snail infection (/miracidium/m2 surface water) 0.000001-0.0005

Site specific

/0i Initial worm burden in i-th group 90-140, 60-110, 30-60

z0 Initial density of infected snails 0.401-0.773

�0i Worm aggregation parameter in i-th group 0.4-1.1, 0.15-0.72, 0.5-0.8

Ah Area of snail habitat (m2) 8004

As Area of village surface water (m2) 2208

Time-varying

�z(t) Parasite development in snail (days) Submodel

T1(t) Air temperature (˚C) Monitoring data

P(t) Rainfall (mm/day) Monitoring data

X(t) Uninfected snail density (snails/m2) Submodel

Si(t) Daily water contact i-th group (m2/day) Survey data

r(t) Water availability (fraction of full) Set to unity
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Table 2 contains the ranges of the passing criteria. Local daily air temperature and rainfall data are 
used as inputs to each simulation for the uninfected snail population submodel, the temperature 
dependent infectivity parameters, Ic(T), Im(T) and for the degree-day calculation on which the 
developmental delay of the parasite in the snail is based.

The simulations include environmental interventions in the 2003-04 period, notably focused 
snail control and the introduction of a number of household anerobic digesters that accept both 
human and pig wastes and subsequently provide biogas for cooking. These units also inactivate 
schistosome eggs with high efficiency, thereby decreasing the egg input into the environment, 
although the digested material is still used as fertilizer. Details are given in Liang et al.15

Because the timing of the collection of the various types of survey data is seldom coincident, 
the initial conditions of the state variables also need to be assigned and these, too, are typically 
generated by sampling from prior distributions the ranges of which are also included in Table 1. 
This can be tricky in models which contain developmental delays, such as the current example. 
A delay � necessitates an initial function, rather than a single initial value, in the interval (–�, 0). 
Further complications arise from a temperature-variable delay as in the present case. However, 
these are not complications introduced by this particular approach to parameter estimation, but 
are generic to any simulation application.

With the model structure given (Chapter 6), the prior parameter distributions and the distri-
butions of the initial conditions specified (Table 1) and the pass/fail criterion defined (Table 2), 
Monte Carlo simulation trials can begin. In each simulation the parameters and initial conditions 
are randomly drawn from the uniform prior distributions, the state equations integrated over the 
specified interval and the calibration conditions checked at the appropriate times. The run is classed 
as a pass or a fail, the parameter vector stored for subsequent analysis and the process repeated.

Table 2. Passing criteria

Dates Risk Group Lower Limit Upper Limit

Human infection epg

15-30 Nov 2000 Farmer 70 200

Student 20 120

19-24 Oct 2002 Farmer 11 37

Student 1 8

28 Nov-10 Dec 2004 Farmer 0.6 21

Student 0 12

Infected snail density Snails/m2

20-30 Jun 2000 0.43 0.85

23 Jun-1 Jul 2001 0.12 0.38

15 June-5 July 2003 0.041 0.218

Mouse bioassay Worms/mouse

30-31 July 2001 0 2

30-31 Aug 2001 0 5

26-27 Sept 2001 0 1

30-31 Oct 2001 0 1

30 Jun-1 July 2003  0 1 
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As has been recounted elsewhere, the fraction of simulations which meet the passing criteria 
is generally very small, 1% would be excellent, but not to be expected in the initial runs.4 The dif-
ficulty of achieving reasonable numbers of passes for subsequent analysis is generally regarded as 
the principal weakness of the approach. As a result, it is seldom feasible to use statistical analyses 
that rely on numbers of parameter vectors for passing simulations in excess of a few thousand, at 
least for complex models. In any case, there is a good reason to run the model on a fast computer 
with efficient simulation software. In the present case, after initial debugging, the model was run 
on a Dell Optiplex 755 (Intel Core 2 Duo E6850 3.00 GHz CPU) using Matlab® version R2007a. 
Over the 2000-2004 calibration period, 306 passing simulations were obtained in 90,100 trials 
which ran overnight.

It is possible that the structure of the model, or the prior parameter ranges, are inconsistent 
with simultaneously meeting all calibration criteria. The result is no passing simulations, or perhaps 
very few. Hence, it is wise to save from each simulation run a vector indicating whether each of 
the components of the pass criterion was met (1) or not met (0). For a passing run, all elements of 
this vector are unity and, for failing runs, at least one entry will be zero. In the current example, a 
failing simulation produced the criterion vector keyed in order to Table 2:

[1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1]

where the two failing sub-criteria are the mean egg excretion from farmers in October 2002 and 
the village average infected snail density June 2000. Calculating the correlation between each of 
the elements of this criterion vector is often instructive. A large negative correlation may point 
to either prior distributions with incompatible ranges or a structural deficiency in the model. In 
either case, it is an issue to be addressed before going into production runs.

The Posterior Parameter Space
An underlying reason for the complexity of the posterior parameter space is that the calibration 

criteria are generally dependent on functions of the basic model parameters rather than dependent 
on their values individually. For example, if an important rate in the model is dependent on the 
product of two or more parameters, as in equation 1.1 of Chapter 6, passes can occur over the 
entire range of each if the others assume a value yielding a product in the correct range. Similarly, 
for linear differential equation models of the form dx/dt = Ax, where A is a constant matrix, the 
eigenvalues of the characteristic equation, which determine the dynamic behavior of the system, 
are complicated nonlinear functions of the elements of the A matrix. Hence, if the calibration 
criteria are sensitive to the eigenvalues of A, the passing space of the basic parameters is geometri-
cally complex and almost certain to be a small fraction of the volume of the space defined by their 
independent prior distributions. For these complex models CPU time per simulation is generally 
sufficiently costly to motivate the search for ways to increase the pass rate.

Recent work in our group aimed at understanding the role of the site-specific parameters in 
reducing or eliminating transmission suggests a strategy for increasing the pass rate that may be 
useful for many infectious disease analyses where the basic reproductive number R0 is of central 
interest.15 The example of the eigenvalues of the A matrix discussed above motivates the speculation 
that the calibration criterion may depend on R0. If so, even an approximate analytical expression of 
its dependence on model parameters might provide some insight into the complicated shape of the 
pass region and thereby suggest a means of increasing the pass rate. In the present case, a simplified 
model which leads to such an approximate R0 is obtained by merging the three sub-populations 
in the village into one, assuming neither of the model’s nonlinearities is operational and that the 
time variable delay is fixed at some median value. This leads to the simplified model:
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where w(t) is the mean worm burden in the human population, z(t) the average infected snail 
density in the village environment, �w the developmental delay of the parasite in humans, �z the 
developmental delay of the parasite in snails and the �(t – �) parameters are the time-variable expo-
sure or environmental parameters each normalized by dividing by their annual maximum values.

The simplified model then allows the approximation R0 � Ps Pb, where Ps is a function of 
site-specific parameters and Pb of biological parameters. Woolhouse, in his very useful discussion 
of modelling and the control of schistosome transmission dynamics, used a similar approach and a 
two parameter description of R0, but focusing on the human-to-snail and snail-to-human portions 
of the transmission cycle.16 In the present case, the parameter aggregations are:
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There are four parameters included in Ps which are not listed in Table 1. � and � relate to spatial 
inhomogeneites in the distribution of infected snails and of human water contact over the village 
irrigation system. As noted above, the parameters S and X are the annual maxima of the time 
variable water contact and uninfected snail density, respectively and arise from the normaliza-
tion of those parameters in the simplified model. Because of this normalization and the fact that 
interventions affecting X(t) and the parameter � were implemented in the 2003-2004 period, the 
value of R computed from these relations for any given simulation run can be expected to over-
estimate the postcontrol or effective reproductive number, Reff. That is, it is likely that declining 
worm burdens post 2004 will occur for values of R based on the foregoing approximations above 
1. This is essentially a scaling issue which does not alter the approach to achieving an increased pass 
rate. However, the value of 1 looses its traditional relevance. To underscore that fact, we redefine 
R0 � PsP and below refer to R0 rather than R0 or Reff .

Since Ps and Pb are known functions of their respective parameter sets, each can be computed 
for each simulation run together with the value of R0. The question is if this value, derived from 
the approximate model, is useful in discriminating between passes and fails in the full model. As 
noted earlier, an initial run over the full 2000-2004 calibration period yielded 306 passes from 
90,100 simulations for a pass rate of 0.34%. Figure 1 shows the cumulative distribution func-
tions of R0, Pb and Ps separately for the 306 passes and 500 randomly selected fails. The passing 
and failing distributions differ for all three with all passing distributions shifted to the left. That 
is, parameters associated with simulations which meet the goodness-of-fit criteria combine to 
yield lower values of all three of these parameter aggregations, but R0 and Pb are shifted to a much 
greater extent than Ps. Indeed, the shift in R0 is largely due to the influence of Pb. None of the 
values of R0 for the passing simulations exceeded a value of 4.0 where over 75% of the fails did so. 
That is, the calibration criterion are quite sensitive to R0 in this particular case. It appears that for 
practical purposes R0 ! 4.0 is a necessary, but not sufficient, condition, for passing simulations. 
This suggests using the value of R0 as a prefilter to increase the pass rate in subsequent runs. After 
each random draw of the parameters vector from the prior distribution, R0 is calculated and the 
simulation conducted only if R0 ! 4.0. A full calibration run, from 2000-2004 utilizing the prefilter, 
led to 353 passes in 24,700 simulations which is about a 4-fold increase in the pass rate to 1.43%. 
However, there is obviously a great deal of complexity remaining to be explored in the remaining 
portion of the space where R0 ! 4.0 which accounts for the 24,200 failing simulations. Recall that 
the approximate model underlying the R0 calculation does not take account of delay parameters 
�w and �z, nor the parasite aggregation parameter k among other potential candidates potentially 
important to meeting the calibration criteria.

Although we have focused on the importance of parameter combinations, it is sometimes 
instructive to look at the univariate marginal distributions of individual parameters under passes 
and fails. Figure 2 shows these distributions for four parameters of the Pb aggregation, �, �, # 
and h. (Definitions in Table 1.) For passing runs, these distributions show that somewhat higher 
values occur for � and �, markedly lower values for # including a cutoff at about 6 & 10 6 and 
that preferred values of h lie in the middle of the prior range. The most useful information in this 
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example relates to # and the issue of parameter transportability. Recall that the original motivation 
for separating the biological parameters, Pb, from the site specific parameters, Ps, arose from the 
assumption that the biological parameters were transportable from one village to another in this 
region. With that in mind, the difference in the distribution of Pb under passes and fails, shown 
in Figure 1b, suggests that we extend the prefilter idea to constrain Pb to be less than 4 & 10 5 in 
future applications of the model in the Xichang region. The univariate marginal distribution of #, 

Figure 1. Cumulative distribution functions of the biological parameters, Pb, the site-specific 
parameters, Ps and their product, R0, for 306 simulations which pass and 500 simulations 
which fail the calibration criteria.
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shown in Figure 2C, suggests further that the distribution of this single parameter be altered from 
its prior range of 1 & 10 6 to 5 & 10 4 to the range 1 & 10 6 to about 6 & 10 6.

There are clearly many other possible and potentially useful explorations of the posterior 
space, but the foregoing illustrate the challenge and its complexity. More generally, however, the 
R0 strategy, both for both increasing the proportion of passing simulations and understanding the 
characteristics of the posterior parameter space, even in an approximate way, is a strategy of that 
might be of general utility in informing disease transmission modelling for management purposes. 
In such applications one is generally focused on the goal of assuring that the zero equilibrium 
state is stable and that the range of attraction of the zero state is as large as possible in the face of 
considerable uncertainty in many parameter values. Hence, preliminary studies using models to 
determine the nature and extent of calibration data sensitive to R0 should be useful in setting data 
collection priorities for field surveys. In this context, the foregoing example leads to the specula-
tion that there might be field data which is not cost effective to collect with respect to estimating 
R0 as a prelude to studying management options.

Assuming that, in the end, the calibration runs result in at least several hundred passing pa-
rameter vectors, these vectors can be used directly to explore the effects of intervention strategies 
as recounted in Liang et al.14 In the present example, suppose that it was feasible to reduce the 
extent of the snail habitat by 20%, perhaps by concreting a portion of the village’s irrigation ditches. 
The issue is then to determine if this intervention would lead to a high probability of decreasing 
transmission with time. Suppose this intervention was to be implemented right after the end of the 
calibration runs in 2004 and the forecast was to run until 2009. The baseline run from 2004-09 
would use the passing vectors unaltered. The habitat reduction run would allow the comparison 
by using the same vectors with the value of Ah in each of the passing vectors decreased to 80% of 
its original value. Other control options could be studied in the same fashion.

Bayesian Melding
As noted earlier, the pass/fail procedure for incorporating field data into the mechanistic 

modelling framework is a special case of what is called Bayesian melding.8 We will first summarize 
the approach and then indicate how it can provide a more complete description of the posterior 
parameter space where the prior distributions are not uniform. The following exposition below 
draws heavily on an earlier description of the approach.17

In Bayesian melding, two priors on the output are compared. One prior is based on literature 
or field data as to what is reasonable output. These have been referred to above as the calibration 
criteria and are summarized in Table 2 for the example used herein. The other prior on the output 
is induced by running the model on prior information on input parameters, e.g., Table 1 in the 
example. These two output priors are “melded” together and inverted to the input parameter 
space, thereby refining the estimate of the input parameters. In detail and using Poole and Raftery’s 
terminology,8 let,
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where M is the deterministic model that relates a n-vector of input parameters, 1, to a p-vector 
of outputs:
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where p(1, M(1)) is the premodel joint distribution. One can think of p(1, M(1)) as contain-
ing the statistical information and relationships among the parameters and state variables before 
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considering how these inputs determine the outputs, ϕ. The postmodel joint distribution, �(1, 
ϕ), however, only puts mass on input/output combinations consistent with the model, so it is a 
rescaled version of p(1, M(1)) with the mass of the impossible input/output combinations set to 
0. In the schistosomiasis model, for instance, if the prior p(1, M(1)) allows positive probability 
on the combination h � a and wik(t) � b, whereas the structure of the model suggest such a com-
bination could never exist (although each values are acceptable in different combinations), then 
the posterior puts mass 0 on (a, b). The interesting distribution with respect to the estimation of 
input parameters is the marginal posterior of the inputs, or,

 � � � �� �) ( , ( )).p M
As discussed above, we will ignore the possibility of having sufficient data to construct mean-

ingful likelihood on the outputs. Thus, one can typically write the prior as,
p q q� �� � � �, ) ( ) ( )1 2

where q1 and q2 are the prior distributions for 1 and ϕ, respectively. If there is sufficient data on 
one of the outputs, so that a likelihood could be defined (say, the distribution of egg counts given 
the mean per village, group is negative binomial), say L(ϕ) 2�p(Dϕ|ϕ), where is the data on the 
outputs, now we have

p q q L� �� � � �, ) ( ) ( ) ( )1 2 � .

As discussed by Poole and Raftery, adding the likelihood here removes the problem of Borel’s 
paradox, where the posterior distribution on the outputs is no longer dependent on the arbitrary 
parameterization of the model, M. Though we have not defined a likelihood in our example, 
optimally and not surprisingly for many reasons, one would have sufficient data on the outputs in 
order to use something more akin to a typical Bayesian procedure.

Figure 2. Univariate marginal distributions of ����� # and h for 306 passing and 500 failing 
simulations.
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Because ϕ � M(1), the model, M and the prior q1, induce another, independent prior on ϕ, say 
q1

*(ϕ). If one had a single prior on the outputs, there are existing Bayesian synthesis methods to 
define a posterior on inputs. Bayesian melding is a method for reconciling these two priors on the 
output. Specifically, Poole and Raftery suggest logarithmic pooling, or ,

~ ( ) ( ) ( )*q q q� � �� � ��� �� �� 1 2
1

resulting in a weighted (on the log-scale) average of the prior on the outputs induced by the 
prior on the inputs, q1

* ( )�  and the specified prior on the outputs, q2(ϕ), resulting in a single prior, 
~ ( )q � ��� �� . The choice of � is discussed in their paper. This prior on the outputs is then inverted to 

get a “melded” prior on the inputs, or ~ ( ) ~ ( )q q� �� ��� �� �� ��� , for 1 � M 1(ϕ). This leads to a posterior 
on the inputs, π 
 
 
��
� 
� � � �)  )~[ ]q L , which itself leads to standard Markov Chain Monte Carlo 
approaches to estimating posterior distribution on the input parameters, 1.

The distillation of the above technical discussion for our purposes, that is without a formal 
likelihood, is that Bayesian melding takes existing information on the input parameters in the 
form of a prior distribution, q1(1) and new information/expert opinion on the outputs, q�(ϕ) 
and constructs a new, refined information on the parameter inputs, �[1](1). Note that the pass/no 
pass procedure simply places a uniform prior on a subspace of ΦS, q�(ϕ) 3 I(ϕ 4 ΦS) where ΦS is 
the acceptance region of Φ. This implies that ~ ( ) ( )*q q� � ��� �� � 1

 if q�(ϕ)��0 and � 0 otherwise. Thus, 
the choice of � does not affect the pass/no pass procedure and a random sample from the implied 
	 
�� 
� �� ��) ( )q q1( )~[ ]  if ϕ � M(1), 0 otherwise, can be generated as follows: 1) generate a random 
1 from q1(1), 2) calculate ϕ ��M(1), 3) keep (1, ϕ) if q2(ϕ)��0 (a pass).

As suggested, most procedures that attempt to estimate the marginal posterior, �[1](1), do so, 
not by finding the distribution directly, but by methods which generate random samples from 
the underlying distribution of interest, one example being the pass/no pass method as discussed 
above. The result is repeated random draws from �[1](1). So, defining the posterior distribution is 
an exercise in multivariate density estimation. Tree-based density estimation is a nonparametric 
multivariate density estimation technique particularly well-suited to estimation of high-dimen-
sional data. In addition, newly developed nonlinear principal components methods permit the 
discovery of strong nonlinear relationships among the parameters that conventional principal 
components methods would not discover. Depending on the model and the prior information 
on the inputs and outputs, our experience suggest that strong nonlinear relationships (sometimes 
deterministic nonlinear relationships suggesting that an optimal set of parameters based on �[1]

(1) is not identifiable) among the posterior distribution of the input parameters is common in 
these types of disease models. Thus, examination of these posterior distributions can help to 
reparameterize the model in ways that avoid identifiability problems.

Conclusion
The fundamental fact underlying the approach to parameter estimation presented in this chapter 

is that there are almost certain to be many parameter combinations that are equally consistent with 
the local data available to calibrate the model. Moreover, when used in a forecasting mode, these 
combinations can lead to different qualitative performance of the model. For example, the effective 
reproductive rate for some may be greater than one and less than one for others. So, the search for 
effective control strategies seeks the feasible control option that will maximize the probability of 
declining transmission over time.

It is in the context of future forecasting that the full Bayesian melding concept becomes at-
tractive. If likelihoods can be estimated for the prior distributions, then the posterior distribution 
can support more informed and hopefully more reliable, inference on the outcomes of the various 
intervention options. This point further illustrates that, if the objective is to design effective local 
control strategies, there is a very intimate relationship between laboratory-generated data, field data 
and the modelling process. It can be argued that low esteem in which modelling is held by many 
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epidemiologists and infectious disease experts arises from the rarity of data-informed modelling 
studies of the sort we advocate. Conversely, modelers can argue that much of the available labora-
tory and field data is of marginal relevance to control programs. There is ample opportunity for 
progress at the intersection.

Acknowledgements
We are grateful to Ishaan Swarup who carried out the simulations discussed in this chapter. The 

research on which the chapter is based was supported by the US National Institute of Allergy and 
Infections Disease (R01-AI50612) the US National Science Foundation/NIH (EID 0622743).

References
 1. Anderson RM, May RM. Infectious diseases of humans: Dynamics and Control: Oxford Science Pub-

lications, 1991.
 2. Spear R, Hornberger G. Eutrophication in Peel Inlet: II. Identification of critical uncertainties via 

generalized sensitivity analysis. Water Research 1980; 14:43-49.
 3. Beck M, Ravetz J, Mulkey L et  al. On the problem of model validation for predictive exposure assess-

ments. Stochas Hydrol Hydraulics 1997; 11:229-254.
 4. Spear RC. Large simulation models: Calibration, uniqueness and goodness of fit. Environmental Model-

ing and Software 1998; 12:219-228.
 5. Box G, Jenkins G, Reinsel G. Time Series Analysis: Forecasting And Control. 4th ed: John Wiley, 

2008.
 6. Chatfield C. The Analysis Of Time Series: An Introduction. 6th ed: CRC Press, 2004.
 7. Beven K, Freer J. Equafinality, data assimilation and uncertainty estimation in mechanistic modeling of 

complex environmental systems using the GLUE methodology. J Hydrology 2001; 249:11-29.
 8. Poole D, Raftery AE. Inference for deterministic simulation models: The Bayesian melding approach. 

J Am Stat Assn 2000; 95:1244-1255.
 9. Grieb TM, Shang N, Spear RC et  al. Examination of model uncertainty and parameter interaction in 

the global carbon cycling model. Environ Intl 1999; 25:787-803.
 10. Beven K. Prophecy, reality and uncertainty in distributed hydrological modeling. Adv Water Resources 

1993; 16:41-51.
 11. Liang S, Maszle DM, Spear RC. A quantitative framework for a multi-group model of schistosomiasis 

japonicum transmission dynamics and control in Sichuan, China. Acta Tropica 2002; 82:263-277.
 12. Macdonald G. The dynamics of helminth infections, with special reference to schistosomes. Trans R 

Soc Trop Med Hyg 1965; 59(5):489-506.
 13. Spear R, Seto E, Liang S et  al. Factors influencing the transmission of Schistosoma japonicum in the 

mountains of Sichuan province. Am J Trop Med Hyg 2004; 70(10):48-56.
 14. Liang S, Spear RC, Seto E et al. A multi-group model of Schistosoma japonicum transmission dynamics 

and control: model calibration and control prediction. Trop Med Intl Health 2005; 10:263-278.
 15. Liang S, Seto E, Remais J et  al. Environmental effects on parasitic disease transmission exemplified by 

schistosomiasis in western China. PNAS 2007; 104:7110-7115.
 16. Woolhouse MEJ. On the application of mathematical models of schistosome transmission dynamics. II. 

Control. Acta Tropica 1992; 50:189-204.
 17. Spear RC, Hubbard A, Liang S et  al. The use of disease transmission models for public health deci-

sion-making: Towards an approach for designing intervention strategies for schistosomiasis japonicum. 
Environ Hlth Perspectives 2002; 110:907-915.



Chapter 8

*Corresponding Author: Caroline O. Buckee—Department of Zoology, University of Oxford, 
South Parks Road, Oxford, U.K., OX1 3PS. Email: caroline.buckee@zoo.ox.ac.uk.

Modelling Parasite Transmission and Control, edited by Edwin Michael and Robert C. Spear. 
©2010 Landes Bioscience and Springer Science+Business Media.

Modelling Malaria Population 
Structure and Its Implications  
for Control
Caroline O. Buckee* and Sunetra Gupta

Abstract

Mathematical models of malaria transmission have been used to inform the design of 
malaria control programs since the mid 20th century, and many of these models have 
provided useful insights into the complexity of the disease. Among developing countries, 

however and particularly in sub-Saharan Africa, malaria remains a major cause of morbidity and 
mortality. One of the main difficulties in controlling the most virulent human malaria parasite, 
Plasmodium falciparum, is its genetic diversity, which confounds attempts to design an effective 
vaccine. The population structure of P. falciparum remains poorly understood but plays a key 
role in determining epidemiological patterns of disease and the development of immunity. We 
discuss the seminal model of malaria transmission developed by Ross and MacDonald, and the 
modifications that have been made since to include more realism. We show that age profiles of 
disease and serological data support a theoretical model in which the parasite population is diverse 
and structured into several antigenic types and highlight the implications of this structure for 
controlling malaria. Lastly, we discuss the current sequence data on parasite antigen genes that 
are important for the aquisition of immunity, and the results of a new analysis of P. falciparum 
population structure at the genomic level.

Introduction
Malaria remains a major global public health problem, causing about 500 million cases and over 

a million deaths each year.1 Although the disease has been eliminated in many parts of the developed 
world due to intense chloroquine use and mosquito control programs during the 1950s and 1960s, 
the logistical difficulties associated with the implementation of these programs in many develop-
ing countries, as well as the emergence of resistance to DDT in mosquitoes and to chloroquine 
in the parasite, led to a discontinuation of the WHO’s Global Malaria Eradication Program in 
1972. The breakdown of malaria control led to a resurgence of malaria cases worldwide and severe 
epidemics in areas such as Madagascar and Sri Lanka (reviewed recently in ref. 2). Renewed interest 
in controlling the disease in the past decade has led to significant funding for basic research and 
control efforts, however. The design of appropriate control programs relies on an understanding 
of the complex dynamical interactions between vector ecology, the lifecycle of malaria parasite 
and the pathology of the disease in humans, which remain poorly understood. The complexity of 
these interactions leads to nonlinear relationships between important epidemiological parameters 
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and the use of mathematical models can provide an important tool for understanding the potential 
effects of control programs on malaria prevalence and disease.

Ronald Ross formulated the seminal model of malaria transmission between humans and 
mosquitoes in 1911, and it was subsequently modified by MacDonald in the 1950’s. Based on 
a simple framework which tracks the proportions of human and mosquito populations that are 
susceptible and infected, these models emphasized the relative importance of different aspects of 
the transmission system in determining malaria prevalence. They were used to successfully inform 
the design of control programs in many countries, by providing support for the intense efforts to 
kill adult mosquitoes by the global eradication program, for example. The Ross-Macdonald model 
is deficient, however, in capturing certain essential features of malaria transmission, such as natu-
rally acquired immunity. Numerous models have been developed to add “realism” to the original 
framework, but the fact remains that we still lack a thorough understanding of the relationship 
between infection and immunity in the host and its relation to the biology of the malaria parasite. 
One of the major reasons for this is the genetic and phenotypic complexity of the parasite itself. 
Figure 1 illustrates the lifecycle of the most virulent human malaria parasite, Plasmodium falciparum, 
highlighting its variety of morphological forms. Disease symptoms in humans are associated with 
the blood stage of the parasite, when rounds of asexual replication occur within red blood cells 
leading to recurring fever, anemia and occasionally coma and death. It remains unclear why some 

Figure 1. The lifecycle of Plasmodium falciparum. A) Sporozoites are injected into the human 
host when an adult female mosquito takes a blood meal. They travel rapidly to the liver (B), 
where they invade liver cells and undergo rounds of asexual reproduction and produce hundreds 
of merozoites. Upon release into the bloodstream (C), merozoites invade red blood cells and 
begin cycles of replication, lysis of the cell and repeated invasion (D). It is during these rounds 
of replication that disease symptoms manifest themselves. Some merozoites differentiate into 
male and female gametocytes (E), the sexual forms of the parasite responsible for transmission. 
Mosquitoes take up gametocytes upon feeding (F). Within the mosquito gut gametocytes unite 
and form zygotes (G), mature, eventually cross the gut barrier and travel as newly formed 
sporozoites (H) to the salivary glands for transmission back to the human host.
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individuals suffer these complications and others don’t. Although a range of host factors such as 
genetic background and immune status are undoubtedly important in determining disease outcome, 
heterogeneity within the parasite population also appears to play a major role.

By the late 19th century, distinct species of the malaria parasite Plasmodium, as well as differ-

fever and other variable disease phenotypes such as quinine resistance and virulence (reviewed 
in ref. 3). This heterogeneity within the parasite population was also apparent in age profiles of 
infection and disease, which suggested that naturally acquired immunity builds up gradually 
and requires exposure to many different parasites. Furthermore, serological studies have shown 
that immunological responses to parasite isolates seem to be primarily isolate-specific.2 4 We will 
discuss this evidence that the targets of immunity are polymorphic, focusing on mathematical 
models exploring the mechanisms behind and the implications of a parasite population made up 
of independently transmitted parasite types.5,6 The epidemiological parameters of transmission 
are significantly affected by this assumption and this must be taken into account when designing 
control problems.

Sequencing projects have now given us insight into the structure of the parasite population at 
the genomic level. Phylogenetic analysis of these sequences is often impossible for malaria antigens, 
however, due to high rates of homologous and nonhomologous recombination. New techniques for 
understanding patterns of genetic diversity are being developed that do not rely on multiple align-
ments or particular evolutionary models. We discuss results from these approaches, which support 
the notion that there may be restricted antigenic types that could be targeted by vaccination. A solid 
link between genetic and phenotypic structure is needed to understand how this gene sequence data 
relates to expression in the host and disease phenotype, however. Mathematical models will continue 
to play an important role in uncovering this link and in our understanding of the relationship between 
the population structure of Plasmodium falciparum and malaria epidemiology and control.

Adding Realism to the Basic Framework of the Ross-MacDonald Models
The seminal models of malaria transmission formulated by Ross and MacDonald have remained 

the framework for the vast majority of theoretical models describing malaria epidemiology since 
they were developed during the first half of the 20th century. Although these models capture many 
defining features of malaria epidemiology, there are several important assumptions affecting their 
utility in guiding public health programs. First, mosquito biting rates in the model are assumed to 
be homogeneous, despite evidence that mosquitoes have systematic preferences for certain hosts.7 
Second, it is assumed that humans do not acquire any immunity to the parasite, which we will show 
is incompatible with both serological evidence and age profiles of disease and infection. Third, hu-
man, mosquito and parasite populations are assumed to be homogeneous. This chapter will review 
all these assumptions, but will focus on recent attempts to understand parasite population structure 
and the implications of these studies for estimates of the basic reproduction number and the design 
of vaccines.

Heterogeneity in Biting Rates and Susceptibility
Many models have been developed which add various levels of complexity to the basic 

Ross-MacDonald framework. One of the first issues to be addressed was the assumption of homo-
geneous biting rates by mosquitoes. Studies measuring the proportion of “freshly fed” mosquitoes 
containing human blood have shown that host selection by mosquitoes is not random,7 as assumed 
in the original model. In fact, mosquitoes appear to actively select hosts harboring gametocytes, 
the stage of the parasite lifecycle responsible for transmission.8 By dividing the human population 
into subpopulations with different biting rates, Dye and Hasibeder 9 showed that the assumption 
of uniform biting leads to an underestimation of R0, the basic reproductive rate of the disease, even 
without assuming that mosquitoes preferentially select infected hosts. Heterogeneity in biting rates 
also leads to changes in the estimates for overall prevalence of infection, which under assumptions 
of homogeneous biting rates is overestimated in highly endemic areas and underestimated in low 
transmission regions.9 It also causes large differences between subpopulations of hosts with respect 
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to their contribution to transmission,10 such that control programs targeting hosts that are bitten 
frequently will be most successful. Furthermore, current estimates of how heterogeneous biting 
rates relate to the prevalence of infection in the field show that the interaction between the two 
may be variable and this heterogeneity must also be taken into account when modelling the effects 
of control programs on malaria transmission.11,12

Extensions of Dye and Hasibeder model, in which host populations were also subdivided with 
respect to susceptibility and duration of infection, explored the effects of genetic heterogeneity 
in the host population on malaria transmission. Variability between hosts due to innate genetic 
differences in blood group or sickle cell type, for example, was modeled by assuming that two types 
of host exist with high or low susceptibility, long or short duration of infection. Calculation of R0 
then required the inclusion of the variance in these parameters and their covariance with respect 
to each other (reviewed in ref. 17).13 In this case R0 may be increased or decreased, depending on 
whether the covariance between parameters is positive or negative. The prevalence of infection 
will always be increased, however, when there is significant variance in host susceptibility or the 
length of infection. Again, the inclusion of heterogeneity in these models highlighted the often 
counterintuitive effects of changes to a highly complex system and the importance of mathematical 
models in our understanding of these nonlinearities.

Superinfection
It has long been recognized that the population structure of the malaria parasite may be better 

represented as multiple “broods” than a single entity and that different “broods” may coinfect one 
host (reviewed in ref. 3). MacDonald criticized the original Ross model in which hosts cannot 
be reinfected until they have cleared current infections and suggested a model of superinfection 
in which “broods” co-infected humans independently of each other. Dietz14 incorporated su-
perinfection into a model of malaria transmission by dividing the host population into different 
classes depending on the number of infections they harbor. He explored a range of assumptions 
about the density-dependent constraints on multiple infections, ranging from models in which 
infections occur completely independently of each other, to those in which only one infection is 
possible. With complete density-dependence (i.e., the original model) the prevalence predicted 
was much lower than in models that include superinfection. As in previous studies, models al-
lowing superinfection showed that for higher R0 values, changes in transmission due to control 
programs have little effect on prevalence. These models also highlighted the importance of the 
type of density-dependence occurring both in the human host and in the mosquito, which both 
remain poorly understood, for the estimation of R0.

Incorporating Immunity
One of the most obvious problems with the Ross-MacDonald model is the absence of acquired 

immunity in humans. The relationship between infection and immunity to the malaria parasite 
is complex and poorly understood, although its inclusion in mathematical models is vital for an 
understanding of the potential effects of vaccination. Models by Aron and May15-17 incorporated 
observations of semi-immune adults living in endemic areas by adding an immune class of people 
that were infected but asymptomatic. A key assumption of this framework is that individuals are 
removed from the immune class and became susceptible again after some period of time in the 
absence of immunological boosting by new infections. Thus, the rate of acquisition of new infec-
tions determines the duration of immunity. Analysis of this model showed that in endemic regions, 
the suppression of transmission through drug treatment for example, may sometimes increase the 
prevalence of disease. Although several more recent studies have attempted to incorporate im-
munity into the Ross-MacDonald framework,18 few have generated qualitatively different results 
from Aron and May16 and until we have a better understanding of the mechanisms underlying the 
development of immunity, their validity remains un-testable.

Understanding how naturally acquired immunity to the malaria parasite develops remains 
a major challenge and one that is critical to vaccine design. Figures 2A-C show the age profiles 
of malaria infection and mild and severe disease in an endemic region (from Snow and Marsh, 
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Figure 2. Age profiles of infection and disease in a malaria-endemic region (from Snow and 
Marsh, 1990, Gupta et al, 1994). A) The prevalence of malaria infection, defined as the per-
centage of individuals of different age groups harboring blood-stage parasites, measured by 
microscopy. B) The incidence of mild malaria episodes defined as uncomplicated infections 
presenting at the out-patient clinic in West Africa. C) The incidence of severe malaria disease 
in the same region: severe malarial anemia (SMA) and cerebral malaria (CM).
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1990). The prevalence of infection (Fig. 2A) is extremely high among infants and young children 
and drops gradually in adolescence and into adulthood. Clinical disease shows a different pattern 
(Fig. 2B,C) and can be divided into several distinct syndromes from mild malaria to severe cerebral 
malaria to severe noncerebral malaria.19,20 Mild episodes (Fig. 2B) are suppressed among infants 
under one year, peak at approximately 1-2 years and fall gradually with age into adolescence. Severe 
noncerebral malaria shows a similar peak among 1-2 year olds, but falls much more rapidly among 
young children (Fig. 2C). Cerebral malaria also declines rapidly with age, but it shows a delayed 
peak in incidence (Fig. 2C) compared to severe noncerebral disease. In spite of the number of stud-
ies of parasite prevalence and disease, our understanding of naturally acquired immunity remains 
incomplete and recent mathematical models fitted to data from Tanzania and The Gambia have 
shown that the generation of immunity is likely to require at least two different mechanisms, both 
suppression of disease and parasite clearance, occurring on different time scales.21 In addition, 
maternal antibodies clearly play an important role in protection against disease in the first few 
months of life,22,23 however there may be differences in the period of postnatal protection against 
cerebral and noncerebral malaria.24 Gupta et al25 also identify a “strain-transcending” immunity as 
being important for protection against severe (noncerebral) disease after the first few infections. 
More basic research is required to untangle the contribution of different mechanisms of immunity 
to patterns of infection and disease.

Modelling the Effects of Parasite Population Structure
The observations of the gradual decline in infection and disease and the heterogeneity of disease 

phenotypes led to the suggestion that immunity may be directed against polymorphic parasite 
antigens. Under this hypothesis, individuals growing up in endemic regions require exposure to 
many different parasites in order to build up a repertoire of antibodies to different antigenic types. 
This idea was supported by a number of serological experiments showing that patients generate ag-
glutinating antibodies specific to their own isolate during infection, but not to isolates from other 
patients.26-28 Furthermore, Gupta et al6 showed that exposure to particular isolates among children 

Figure 3. Age profiles of serological responses to different parasite isolates among children 
from Papua New Guinea (from Gupta et al, 1994). The proportion of people of different age 
groups with agglutinating antibody responses to each of four wild isolates from PNG and 
one lab isolate (HB3).
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from Papua New Guinea rose gradually with age compared to the rapid rise in exposure to any P. 
falciparum isolate (Fig. 3). In studies of serological responses of Kenyan children, it was shown that 
the frequency of recognition of particular parasite isolates was associated with both young host age 
and a limited antibody repertoire,3,28 suggesting that there may also be a hierarchy of infection with 
different antigenic types, possibly caused by their different frequencies in the parasite population.

Implications of Antigenic Diversity for Control
An antigenically diverse parasite population has important implications for our understanding 

of the basic epidemiological parameters of malaria transmission. For example, Gatton and Cheng29 
used a stochastic simulation model to demonstrate that the time taken to develop immunity was 
directly proportional to parasite antigenic diversity. A model exploring the interaction between 
immunity to different parasite phenotypes and the rate of evolution of the parasite showed that 
cross-reactivity in the parental genotypes would delay the appearance of and increase the chances 
of extinction of, a resulting recombinant form.30 An extension of this framework to include 
population effects demonstrated that the presence of increasing numbers of independent parasite 
genotypes in the parasite population may significantly prolong the persistence of each one in the 
host population.31

Assuming antibodies generated to one antigenic type will not protect a host from infection 
with a different antigenic type effectively removes competition for hosts between strains. Thus, 
the parasite population is divided into distinct antigenic systems transmitted essentially indepen-
dently. Models by Gupta et al.6,32 explored the implications of this removal of competition between 
parasite strains. In many theoretical models exploring the relationship between virulence and R0, 
competition between parasites with varying virulence and R0 values will select for a pathogen 
population characterized by an intermediate level of virulence that maximizes R0. Under this 
framework, competitive exclusion of pathogens outside the range of optimum transmission will 
occur. In a population composed of discrete antigenic types, however, the lack of shared antigenic 
epitopes between strains reduces direct competition for hosts between different types, facilitating 
the coexistence of a wider range of R0 values and levels of virulence.6 For falciparum malaria, the 
separation of severe and mild isolates into distinct antigenic systems allows for the coexistence of 
two different sets of maximized R0 values. These models predicted that cerebral malaria, with its 
delayed peak in prevalence, may be caused by a distinct set of circulating strains, whereas severe 
malarial anemia represents a rare outcome of infection with any number of “mild” strains.

Another important implication of a discretely structured population relates to the calculation 
of epidemiological parameters from R0. For simple pathogen systems like measles, the basic repro-
ductive rate of a pathogen is inversely proportional to the average age of first infection:33

 (5)

where L is the average lifespan of the host and A is the average age of first age of infection. Estimates 
based on this relationship for malaria yield an extremely high R0 value, since infants in malaria-en-
demic regions usually experience their first malaria infection before they are one year-old. In a system 
composed of discrete antigenic types, however, R0 for the whole parasite population is calculated 
as the sum of the R0 values of individual strains. Thus, rather than assuming that immunity to the 
malaria parasite is short-lived, Gupta et al32 showed that long-lived strain-specific immunity can 
lead to a young average age of first exposure to any of n circulating strains, An:

 (6)

Here, relatively low R0 values for each antigenic Type i contribute additively to the probability 
of becoming infected with any antigenic type. In this case, immunity to each strain is assumed 
to be life-long. Data from Papua New Guinea showing a gradual rise in antibodies to particular 
parasite isolates compared to antibodies to any isolate support this hypothesis, as discussed in the 
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previous section. The recalculation of R0 as a cumulative value also has implications for control 
programs. For most pathogens the proportion of the population that must be vaccinated ( p) in 
order to eradicate a disease, for example, can be related to R0 by the following equation:

 (7)

Hence, to eradicate a disease with a very high reproductive rate, nearly everyone in a population 
must be vaccinated. Assuming a number of discrete antigenic types each with a relatively low R0, 
however, the targeting of particular types in a vaccine, those associated with cerebral malaria for 
example, becomes a more realistic possibility.

Recent attempts to estimate R0 in the field have made painstaking efforts to parameterize a 
modification of the Ross-MacDonald model using data from around the world.34 Their models 
predicted the range of R0 values from over a hundred African countries to vary between less than 
one and close to ten thousand, several orders of magnitude greater than previous estimates. They 
assume a system with infinite broods and independent clearance however (see ref. 18 for details) 
and make no attempt to model the effects of population structure on immunity. Furthermore, 
they include immunity only as a reduction in infectivity of both humans and mosquitoes (due 
to transmission-blocking and liver-stage immunity, respectively) that varies as a function of the 
entomological inoculation rate. These simplifications largely ignore the important aspects of 
population structure described above and lead to the extreme values of R0 they calculate.

Emergence and Maintenance of Strain Structure
In order for distinct antigenic strains of the malaria parasite to persist in spite of high rates of 

recombination, however, some mechanism for preventing the breakdown of associations between 
antigenic epitopes must exist. Mathematical models have shown how discrete antigenic types 
may be structured and maintained in the presence of recombination, however, through immune 
selection.35,36 These models assume that when infected individuals become immune, they may gain 
cross-immunity to parasites that share antigenic variants with the infecting isolate. Hosts infected 

-
pending on �, the strength of cross-immunity. In the simplest hypothetical case, for example, each 
antigenic type is defined by two loci, each with two possible allelic variants, giving four possible 
types (see Box 1). This model is defined by a system of ordinary differential equations the changing 
proportions of the population that are either infected, immune, or exposed to different antigenic 
variants are modelled for different levels of cross-immunity. When cross-immunity is very weak, 
infected hosts will not gain protection to different parasites even if they share antigenic epitopes 
and all antigenic types will coexist at a prevalence determined by their intrinsic transmissibility. 
This situation could arise due to epitope shedding or weak immune responses, for example. At 
intermediate levels of cross-immunity, unstable population structure emerges, displaying cyclical 
or chaotic patterns of dominance of different antigenic types. When cross-immunity is strong, 
however, immunity to one antigenic type will confer substantial protection against isolates that 
share antigenic epitopes, leading to the dominance of a set of genotypes with non-overlapping 
antigenic repertoires (which will not be competing for susceptible hosts). Discrete, non-overlapping 
antigenic repertoires will persist over time in spite of recombination between parasites, because 
immune selection will suppress the prevalence of recombinant combinations that share epitopes 
with dominant antigenic types.

Testing this hypothesis remains difficult while the immuno-dominant parasite epitopes respon-
sible for acquired immunity remain unknown, however. The serological studies described above, 
showing isolate-specific immune responses in patients from endemic regions, are suggestive of 
strong antigenic structuring. However, until a system of defining antigenic repertoires based on 
known epitopes is developed and we understand more about expression patterns within the host, 
it remains an untested hypothesis.



120 Modelling Parasite Transmission and Control

Sequence-Based Analysis of Population Structure of Malaria  
Parasite Antigens

Despite these difficulties, now that three full genome sequences of Plasmodium falciparum 
lab strains are available and sequencing technology continues to become cheaper and easier, we 

Box 1. The effects of immune selection on antigenically diverse pathogens (Gupta et al35). 
Pathogen strains are defined by two loci (shown as either the circle or the triangle in the 
figures), each with two alleles (yellow or white, in this case). Once infected with a particular 
strain, hosts gained partial immunity to any other strains with shared antigenic determinants. 
The strength of cross-immunity was determined by the parameter gamma (�) and all strains 
were assumed to have the same transmissibility, �. For each strain, the host population 
consisted of three overlapping compartments: the proportion that were infectious to other 
hosts, xi, the proportion that were completely immune, zi and the proportion partially and 
completely immune, wi. Immunity was gained immediately upon infection and infectious-
ness was lost at a rate of �, such that those who were infected (x) were a subset of those who 
were completely immune (z), who were in turn a subset of those who were partially and 
completely immune (w). It was assumed that the duration of infectiousness (1/�) was short 
compared to the average host life-span (1/�) and that immunity was life-long. The effect of 
recombination was not explicitly included in the model, however all possible strains were 
present from the start in order to investigate the competitive interactions between them. The 
figures show the effects of immune selection assuming (A) weak, (B) medium and (C) strong 
cross-immunity (�). At low levels of cross-immunity, all strains coexist at the same prevalence. 
When cross-immunity is very strong, the pathogen population is dominated by two strains 
with non-overlapping antigenic repertoires, since these will not be competing for hosts and 
the remaining strains are suppressed. At intermediate levels of cross-immunity, cyclical be-
havior is observed and pairs of strains with non-overlapping antigenic repertoires oscillate 
with respect to each other. Chaotic behavior is also observed for some parameter regions. A 
color version of this image is available at www.landesbioscience.com/curie.
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have the opportunity to start exploring the genes underlying parasite population structure. One 
of the best candidate targets of the isolate-specific agglutinating antibodies is the highly diverse, 
polymorphic family of proteins Plasmodium falciparum erythrocyte protein 1 (PfEMP1), expressed 
on the surface of infected red blood cells.37 PfEMP1 is implicated as a virulence factor due to its 
role in the cytoadherence of infected cells to the endothelial lining, mediated by host cell recep-
tors such as CD36 and ICAM1.38 The P. falciparum genome contains approximately 60 var genes 
encoding PfEMP1. These undergo clonal antigenic variation during infection; different variants in 
the parasite var repertoire are expressed sequentially in a mutually exclusive manner,39 prolonging 
infection and increasing the parasite’s chances of transmission. Var genes also exhibit extremely high 
rates of recombination, not only between parasites during the sexual stages in the mosquito but 
also in the human host between different genes within the same parasite.40 This antigenic diversity 
and complexity of expression during infection complicates our understanding of the structuring 
of these loci, both within individual parasite genomes and across the parasite population.

Despite the incredible diversity of var genes across the parasite population, some constrained 
structure is apparent. Serological studies have shown that PfEMP1 proteins from parasite isolates 
infecting young children tend to be recognized by most adults in an endemic region and that by 
the time children reach the age of about fifteen in areas of high transmission they have gained 
exposure to most PfEMP1 variants circulating in the local parasite population.3 Following the 
sequencing of the Plasmodium falciparum genome, analysis of var repertoires has also hinted 
at limits to their diversity. Attempts to classify var genes into meaningful groups based on fully 
sequenced lab strains have led to the identification of approximately 6 different var groups, dif-
ferentiated based on protein domain structure, different upstream promoters, the direction of 
transcription and chromosomal position.41 44 This system of classification identifies three major 
groups (A, B and C) and two minor groups (B/A and B/C). Different groups appear to show 
marked differences in their cytoadherent properties, for example groups B and C bind to the host 
receptor CD36, whereas group A does not.45 They also have different immunological properties, 
with group A var genes being better recognized by antibodies from sera of children growing up in 
malaria-endemic regions.46 The diversity of the sequences themselves has made sequencing whole 
var repertoires from clinical isolates extremely difficult, however. A sequence-based approach 
to var gene classification has been developed which uses short sequence fragments.47 Regions of 
homology at the beginning and end of these tags allow for the design of primers that can amplify 
most var genes. The sequence tags are grouped according to a series of semi-conserved regions 
and the number of cysteine residues present between them. A study by Bull et al48 analyzing these 
sequence fragments from wild isolates showed that var genes belonging to the 6 different groups 
were represented in the same proportions within different parasite genomes, but their expression 
patterns varied considerably in different hosts. Figure 4 illustrates this finding, showing the genomic 
structure of var gene repertoires from 12 wild Kenyan isolates and their profiles of var expression. 
The expression of particular groups of vars was also found to be associated with different disease 
phenotypes, such as rosetting and the immune status of the host.48 The groups identified using 
these sequence-based techniques are therefore linked with phenotypic characteristics and represent 
a useful system of classification.

Understanding the evolutionary relationships between var genes and var gene groups remains 
a major challenge, however. Phylogenetic analysis of the relationship between var sequences is 
confounded by the high rates of homologous and nonhomologous recombination; most phylo-
genetic techniques rely on an initial alignment of sequences, which is not possible for most var 
genes. Bockhorst et al49 have overcome this problem for a small group of conserved var genes as-
sociated with malaria in pregnant women, by identifying segments of correlated nucleotides within 
sequences and using whole segments in a phylogenetic analysis and generating “population trees”, 
however this technique cannot be applied to the vast majority of vars. Recently, a technique for 
visualizing the relationships between var sequence fragments has been developed by Bull et al50 
which is not reliant on an alignment. Sequence tags are represented as nodes in a network, with 
edges between nodes representing exact sequence matches at variable regions termed “position 
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specific polymorphic blocks” (PSPBs). These regions show considerable mosaicism, such that oth-
erwise unrelated sequences may share one or more PSPB. Figure 5 illustrates an example of some 
of these sequence fragments, the network they form and the results of an analysis of over 1000 var 
genes from clinical and lab isolates, as well as several P. reichenowi (the primate malaria parasite) 
homologues. The large network is coloured according to the 6 groups previously identified. The 
network has two distinct lobes with loose links between them and these lobes correspond well 
to different groups of var genes based on both classification systems described above. All group 1 
sequences fall within the smaller lobe, for example, whereas group 4 sequences are found in the 
larger lobe. Furthermore, group A genes (using the Lavstsen et al44 system) are all found within the 
smaller lobe. Thus, the separation of groups seems to represent a recombination hierarchy, with 
certain types of var gene recombining with each other more frequently than others. Interestingly, 
P. reichenowi genes fall within the network, indicating that many of these polymorphic regions are 
relatively ancient. The diversity of the malaria parasite is therefore generated by recombination, 
which shuffles variable regions between var genes.

A major field of research in the next few years will be the search for antigenic epitopes within 
var gene sequences and the investigation of how the expression of different var epitopes relates 
to parasite phenotype and disease patterns in the host. Without this link between genotype and 
phenotype, it will be difficult to directly relate the sequencing projects discussed above with the 
mathematical models of population structure presented in previous sections.

Conclusion
The use of mathematical models in the design of malaria control programmes dates back to 

the beginning of the 20th century. The Ross-MacDonald model of malaria transmission provided 
the basis for most modelling efforts since then and gave valuable insights into the importance of 

Figure 4. The genomic (above) and expressed (below) var profiles of wild Kenyan isolates 
(from Bull et al48). The proportion of var sequence tags among 12 wild isolates assigned to six 
sequence group from genomic DNA (A) and cDNA (B). The genomic DNA profile is shown 
for the lab strain 3D7 to the right of (A).
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epidemiological variables such as the mosquito vector lifespan for determining the spread of the 
disease. Many variations on this framework have been developed, however we still lack a thorough 
understanding of the acquisition of immunity to Plasmodium falciparum and the relationship 
between infection, disease and immunity in malaria-endemic populations.

The models discussed in this chapter have aimed to understand mechanisms behind malaria 
epidemiology and dynamics. Many studies have also explored models focusing on specific interven-
tions, however, comparing the effects of different types of control programs and the practicalities 
involved in their implementation. For example, Saul51 developed a simulation model of vaccination 
in which he examined the effects of different types of vaccines—antigametocyte or antisporozoite/
asexual—and the expected changes in malaria prevalence and disease with variable levels of vac-
cine coverage and efficacy. He showed that antisporozoite or asexual vaccines were more effective 
at lower levels of coverage and that in combination with other methods of control, vaccination 
could be a feasible strategy. His recent models (for example ref. 52) take into account the antibody 
levels needed to maintain herd immunity towards a specific mosquito-stage transmission-blocking 

Figure 5. Network showing the relationship between the var sequence tags for wild isolates, 
lab strains and P. reichenowi (from Bull et al50). Locations of var tags from different sequence 
groups within a network constructed primarily from Kenyan wild isolates. A-F) Locations of 
sequence tags belonging to groups defined by Bull et al.47 G) Locations of sequences from 
the fully-sequenced lab strain 3D7. H) Locations of Group A (defined by Lavstsen44) reference 
sequences. I) Locations of P. reichenowi homologues.
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vaccine. Other investigations of the relative merits of different types of vaccines and vaccine 
strategies, as well as the effects of only partially protective or “leaky” vaccines, have been explored 
using age-structure models.53-55 These models included one set of equations for vaccinated hosts 
and one for unvaccinated hosts and highlighted the importance for successful control programs 
of vaccine efficacy and duration and boosting of immunity by natural infections. Another more 
specific model reproduced the conditions of a particular country, Sri Lanka and modeled the effect 
of transmission-blocking vaccines under epidemic conditions.56

We have also not dealt with mathematical models of the spread of drug resistance through 
the malaria parasite population. This aspect of parasite population structure has been modeled 
extensively,57-61 and shows complex relationships between the number of genetic loci involved, the 
level and type of drug use and the level of malaria transmission in the region. These models either 
focus on the spread of resistant alleles through the parasite population (i.e., population genetic 
models) or they incorporate infected hosts and use an epidemiological framework (reviewed in 
ref. 60). Despite the differences in modelling approaches, most of these studies conclude that the 
key to preventing rapid emergence and spread of resistance is minimizing drug use and using them 
in combination with transmission-blocking strategies such as bednets.

Even careful use of malaria drugs will eventually result in the emergence of drug resistance how-
ever, making the development of a vaccine a priority. We have shown that the population structure 
of the malaria parasite at immunodominant loci such as the var genes has important implications 
for the basic epidemiology of malaria and for the design of control programs like vaccination. A 
major goal will be to link var gene repertoire structure and expression patterns with serological 
and disease profiles in endemic regions. This will enable the re-assessment and validation of the 
mathematical models discussed in this chapter, providing the opportunity to design appropriate 
control programs in the future.
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Chapter 9

Mathematical Modelling 
of the Epidemiology of Tuberculosis
Peter J. White* and Geoff P. Garnett

Abstract

Despite the infectious agent that causes tuberculosis having been discovered in 1882, 
many aspects of the natural history and transmission dynamics of TB are still not fully 
understood. This is reflected in differences in the structures of mathematical models 

of TB, which in turn produce differences in the predicted impacts of interventions. Gaining 
a greater understanding of TB transmission dynamics requires further empirical laboratory 
and field work, mathematical modelling and interaction between them. Modelling can be 
used to quantify uncertainty due to different gaps in our knowledge to help identify research 
priorities. Fortunately, the present moment is an exciting time for TB epidemiology, with rapid 
progress being made in applying new mathematical modelling techniques, new tools for TB 
diagnosis and genetic analysis and a growing interest in developing more-effective public-health 
interventions.

Introduction
Despite the availability of effective treatment tuberculosis remains a major global cause of 

morbidity and mortality, with around one-third of the world’s population believed to be infected. 
It caused an estimated 1.7 million deaths and 8.9 million new cases of infection in 2004.1 The 
highest incidence of disease is in sub-Saharan Africa, in part due to interactions with HIV,2-4 
which has fuelled dramatic rises in incidence of the disease in many countries. (Globally, TB is 
the proximate cause of many HIV-related deaths, particularly in Africa.3) Even in many countries 
where its overall incidence is low TB remains a problem: there has been an outbreak in the New 
York in the recent past5,6 and incidence is currently rising in the UK.7

TB Natural History
TB’s natural history is summarized briefly here; it is discussed in more detail below with respect 

to its representation in mathematical models.
Tuberculosis is caused by the slowly-replicating bacterium Mycobacterium tuberculosis 

(M tuberculosis, Mtb). Mtb is in the same genus as M bovis, the cause of the disease of cattle bovine 
TB, which humans can acquire from contaminated milk; it can also infect other species such as 
badgers (Meles meles). Other members of the genus, such as M avis, can cause human disease, 
particularly in the immunocompromised host.
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Person-to-person transmission of Mtb is via the respiratory route, which can occur both 
through close contact between persons and through infectious bacilli being carried throughout 
buildings by air currents (which makes ventilation an important preventative measure;8 this can 
be supplemented by ultraviolet irradiation).

It is important to distinguish between TB infection and TB disease. Most people infected with 
TB never develop disease during their lifetime, but remain latently infected—and uninfectious. The 
progression of an infection to disease is more likely in the years shortly after infection, known as 
primary disease. Thereafter, there is a much lower rate of progression to disease, called endogenous 
reactivation, resulting in a lifetime risk of roughly 10% of developing TB disease (in the absence of 
HIV—see below). Endogenous reactivation can take decades to occur9,10 and is the main cause of 
disease in older people in settings where the prevalence of TB disease is very low. However, those 
with latent TB infection are also subject to exogenous reinfection, where they acquire another TB 
infection; this can cause rapid progression and can be an important cause of incident disease in 
settings with a high prevalence of TB disease and consequently a high force of infection.11

Active TB disease can affect other parts of the body besides the lungs, e.g., causing Pott’s 
disease in the spine and tuberculosis meningitis in the brain, causing morbidity and mortality. 
However, only those with pulmonary (lung) disease can be infectious. (Most mathematical mod-
els of TB transmission only consider pulmonary TB, although nonpulmonary infection causes 
significant morbidity. Also, since the natural history of TB is different in children,12 most models 
consider only adults.) Pulmonary TB can be divided into smear-negative and smear-positive, ac-
cording to whether a sputum sample gives a negative or positive result in microscopic observation. 
Smear-negativity is caused by a lower concentration of bacilli in the sputum and is associated with 
lower, if any, transmissibility.

Without treatment, individuals may recover from active TB disease, but there is disagreement 
over whether natural immune recovery clears the infection, or leads to (re-establishment of ) latent 
infection. In some individuals, untreated active disease leads to chronic, persistent, infectious 
active disease.

Treatment requires long-term use of antibiotics (at least 6 months is recommended for 
short-course therapy), but is generally highly effective, including in those with HIV, provided 
the patient is adherent.4 Lack of adherence can result in the bacterium acquiring drug resistance; 
transmission of drug-resistant strains is a significant problem in many parts of the world: glob-
ally an estimated 4% of patients have multi-drug resistant TB,4 but this proportion can be much 
higher in particular settings. Treatment of drug-resistant TB takes longer and is less effective.4 
Importantly, most patients—even those with HIV—become uninfectious for TB soon after 
treatment commencement.3

Chest X-ray screening can identify pulmonary lesions that potentially indicate active tuber-
culosis. Definitive diagnosis requires sputum smear microscopy, or laboratory culture of sputum 

sputum smear test; nucleic-acid amplification tests also lack sensitivity for smear-negative dis-
ease.4 Diagnosis of latent TB infection previously relied on the tuberculin skin test (TST) where 
inflammation associated with antigen challenge was used to identify those previously exposed. 
Unfortunately, this test lacks sensitivity (particularly in the early stages of primary tuberculosis, 
in immunocompromised persons and in disseminated tuberculosis) and specificity (due to con-
founding by BCG vaccination or other mycobacterial infections). Fortunately, several tests with 
far superior sensitivity and specificity have recently become available.4,13

The immune suppression associated with HIV infection increases the rate of progression of 
latent TB infection, thus increasing the incidence of TB disease.3 However, it is debatable how 
much this increases TB transmission, since HIV increases the proportion of active disease that 
is smear-negative and shortens the infectious period due to more-rapid death associated with 
AIDS.

Currently, there is one vaccine against TB, which uses a live attenuated strain of M bovis called 
Bacillus Calmette-Guérin (BCG). Unfortunately, this offers only partial protection against acquisition 
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of infection and progression to active disease and a more-effective vaccine is badly needed. There is 
also need for new antibiotics. Fortunately, in recent years there has been renewed research interest 
in TB,14 in the areas of diagnostics, drug therapy and vaccines,15,16 promoted by initiatives such 
as the Global Alliance for TB Drug Development (GATB), which is supported by the Bill and 
Melinda Gates Foundation and the Rockefeller Foundation. Greatly-improved diagnostic tests 
have recently become are available4,13,17,18 and have already offered new insight.19

Mathematical Models of TB Transmission Dynamics
The first model of TB was published by Waaler et al in 1962,20 followed by others.21-29 Early 

models tended to treat infection incidence as a parameter, rather than modelling the transmis-
sion of infection per se. Subsequent modelling work was limited until a number of circumstances 
generated substantial interest in tuberculosis and modelling of the infection. Firstly, there was the 
realization that infectious diseases had not been defeated by effective antimicrobial treatment in 
developing countries, where crowded accommodation and poor nutrition facilitated transmission 
and progression to disease and where diagnosis and treatment were inadequate. Secondly, the 
emergence of AIDS and associated increases in tuberculosis disease incidence renewed concern 
over the disease. Thirdly, the emergence of resistance to the limited number of antituberculosis 
drugs available lead to the need for more-complex and expensive treatments and to concerns that 
new drugs were not in development.

A new generation of mathematical models have been developed and analyzed exploring many 
aspects of tuberculosis. Unfortunately, the lack of a clear and cheap tool to diagnose latent infection 
and uncertainty about the natural history of tuberculosis have led to a range of different assump-
tions about the infection and disease being adopted, which affects the findings of the models. These 
assumptions may be adopted for the sake of simplicity or alternatively may reflect the authors’ 
understanding of the infection and disease. It is the assumptions about natural history which dis-
tinguish many of the models rather than the mathematical structure employed. Most mathematical 
models of tuberculosis have been deterministic compartmental models using ordinary or partial 
differential equations or difference equations; these have tended to be either relatively simple models 
for algebraic analysis of equilibria and stability conditions, or more-realistic, more-complex mod-
els analyzed numerically. In addition, there have been some stochastic, discrete-event simulation 
models developed30-33 and this approach is likely to increase in popularity. The following discussion 
of the natural history of tuberculosis is applicable across the model types.

Modelling the Natural History of TB
Latent Period

Different approaches have been taken to modelling the latent period of TB. Some models have 
a single latent stage which all newly-infected individuals enter, meaning that all individuals have the 
same exponentially-distributed period between initial infection and progression to active disease 
(e.g., see refs. 32, 34-36). Other models have more-realistic heterogeneity in rates of progression: 
some have a proportion of newly-infected individuals immediately developing active disease with 
the remainder developing slower-progressing latent infection,37-52 others divide newly-infected 
individuals into fast- and slow-progressors,33,53-60 whilst others have all newly-infected persons 
passing through an early latent phase which has a relatively high risk of progression to disease 
before entering a late latent state which has a lower risk of progression.61-63 The models of Porco 
et al64 and West and Thompson53 have several latent stages of TB infection before the develop-
ment of active disease.

Exogenous Reinfection
Exogeneous reinfection is where an individual with latent tuberculosis infection is subsequently 

infected with TB bacilli from another source. Models differ in the extent to which this occurs 
and its consequences: some models do not incorporate this process32,34,37,38,41-44,46,56,62,64 and others 
implement it in different ways—in some models it causes progression to active disease,33,40,45,47,48,50-52, 
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54,59,61 whilst in others it causes individuals to move from slow- to fast-progressing latent infection, 
from where they move quickly to active disease.58,60,63,65

The effect of exogenous reinfection in tuberculosis epidemiology can be profound. Empirical 
studies have found that it is an important cause of disease in not only high-incidence areas,11 but 
also medium-66 and even low-incidence67,68 ones. This last counter-intuitive finding is due to the 
presence of high-incidence foci of transmission even in low-incidence areas (see Contact patterns, 
below). Gomes et al47,63,69,70 found that a large range of incidence of disease in different settings is 
explicable by a relatively smaller range of contact rates. The greater the importance of exogenous 
re-infection in causing new episodes of disease in a particular setting, the more rapidly infection can 
be brought under control; conversely, if much disease is occurring due to endogenous reactivation 
of previously-acquired, latent infection then disease cases will continue to arise for some consid-
erable time—unless latent infection can be effectively detected and treated. However, modelling 
work has shown that where exogenous reinfection is the dominant cause of disease, a vaccine that 
is only partially protective against reinfection (as is likely to be the case with vaccines developed 
in the near future71) will be of limited benefit.47,69,70

Active Disease
Individuals with active tuberculosis disease are not necessarily infectious. To be infectious, 

one must have pulmonary disease, which can then be sub-classified classified as smear-negative or 
smear-positive, according to whether the infection can be detected by sputum-smear microscopy 
(which is less sensitive than sputum culture). Some believe that smear-negative individuals are un-
infectious, others that they are infectious, but much less so than smear-positive individuals. Whilst 
many models consider only infectious active TB, some also consider non-infectious disease (e.g., 
see refs. 32, 40, 45, 56, 60); in some of these models non-infectious active TB can be a precursor 
to infectious disease.32,45 Typically, models of TB do not consider sputum smear status (e.g., see 
refs. 33-35, 37, 38, 41-44, 46, 48, 51-53, 55, 57, 62, 63, 65, 69). However, the model of Salomon 
et al58 considers both smear-negative and smear-positive individuals, with the former being less 
infectious, having a lower detection rate and converting to smear-positivity over time.

Recovery from TB Disease
There is uncertainty over whether those who recover from active disease through natural re-

covery or antibiotic treatment completely clear their infection, or whether they return to a state of 
latent infection. In some models, there is no natural recovery,32,38,39,42 48,62,63,64 whilst in other models 
natural recovery from active disease returns the individual to latent infection,33,37,40,41,50,51,54-59,61,65 
and in others natural recovery clears infection from the host.35,53,60 Of those models that incor-
porate exogenous reinfection, some allow it to occur to those who have recovered naturally from 
infection35,51,54,57,58,61 whilst others do not.40,60,65

Models also vary in their implementation of antibiotic treatment. In Blower et al 199638 and 
Ziv et al 200162 treatment is effectively lifelong, whilst in Lietman and Blower42 and Ziv et al 
200448 treatment is effectively instantaneous and removes individuals from the model population. 

treatment and exited when they cease treatment, due to successful completion, treatment failure, 
loss-to-follow-up, or mortality. Typically, models assume either that successful treatment clears 
infection completely,32,36,47,56,58,60,65 or, more often, that it returns the individual to latent infec-
tion.33,34,40,44,45,51,52,54,57,59,63,72 Some models explicitly consider those who have experienced treatment 
failure.40,50,57,59,65 Of those models that incorporate exogenous reinfection, some allow it to occur 
to those who have been successfully treated32,45,47,51,52,54,57,58,63,72 whilst others do not.36,40,60,65

In some models, natural recovery and successful antibiotic treatment have the same effect—
e.g., both clearing infection in Dye and Williams 2008,60 both returning to latent infection in 
Rodrigues et al51—but in others they do not. In the model of Salomon et al,58

not clear infection, but returns individuals to slow-progressing latent infection, whilst successful 
therapy does clear infection; exogenous reinfection can subsequently occur in both cases. In Dye 
and Williams 200065 and Dye and Espinal 2001,56 natural recovery moves the individual into a 
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distinct latent state, from where relapse—but not exogenous reinfection—can occur. In the models 
of Blower et al 199537 and Porco and Blower 1998,41 individuals who recover from disease enter a 

not consider treatment), whilst the model of Blower et al 199638 considers treatment interventions 

In two models of Gomes et al47,63 there is no natural recovery; in the former model47 treatment 
clears infection, whilst in the latter it does not63 (in both models exogenous reinfection can occur 
to treated individuals). In Dye et al 1998,40 Cohen and Murray 200457 and Cohen et al 2007,33 
both natural recovery and treatment result in distinct, separate latent-infection states (Dye et al 
199840 also distinguishes between “good” and “bad” treatment).

Vaccination
A key area of uncertainty in tuberculosis epidemiology concerns immunity induced by vaccina-

tion. It has long been believed that vaccination with BCG (a live attenuated strain of M bovis), did 
not protect against acquisition of Mtb infection but gave partial protection against progression 
to active disease, thus protecting the vaccinated individual against disease and reducing onward 
transmission of infection. Consistent with this, Vynnycky and Fine argued, based on their model-
ling analysis,61 that prior tuberculosis infection does not reduce susceptibility to subsequent (re)
acquisition of Mtb but does reduce the probability of progression to active disease. However, 
recent studies using a new TB diagnostic test that can discriminate between an immune response 
to BCG and to infection with Mtb have shown that BCG does offer partial protection against 
acquisition of Mtb infection as well as against progression.19 BCG vaccination has been found 
to have variable efficacy in different settings, for reasons that are unclear.73-75 One possibility is 
that there has been differential attenuation in the different laboratories where it is maintained 
for vaccine production.76 Another possibility is that in some populations there is a relatively high 
rate of exposure to environmental mycobacteria, which might elicit a partially-protective immune 
response to which BCG vaccination adds negligible additional protection.47,77,78

The assumed effects of vaccination have varied amongst models. Note that most models 
considered hypothetical future vaccines rather than BCG. It is likely that any new TB vaccine 
developed in the near future will be only partially protective against acquisition of infection and/
or progression to disease.71 In the models of Lietman and Blower42 and Ziv et al 2004,48 vaccination 
partially protects uninfected individuals against acquisition of infection and reduces the propor-
tion who progress instantly to active disease in the event of their becoming infected; in those who 
have already acquired TB and are latently infected, vaccination reduces the rate of progression 
to active disease. In the models of Garcia et al36 and Dye et al 1998,40 vaccination offers complete 
protection against acquisition of infection by naïve individuals but does not affect the course of 
infection once acquired, whilst in Dye and Williams 200860 vaccination protects, not only against 
acquisition of infection, but also prevents progression to active disease in latently-infected indi-
viduals. In Gomes et al 2004,47 vaccination is partially protective against acquisition of infection 
and exogenous reinfection, but does not affect progression, whilst Gomes et al 200763 consider the 
impact of vaccines that promote recovery from latent infection, without affecting susceptibility 
to (re)infection. Murray and Salomon54 and Murray 200230 consider vaccines that protect against 
acquisition or progression. Models also differ with regard to whether the effect of vaccination wanes 
over time36,40,42,48 or not.47,60 Clearly, the modeled impact of vaccination depends upon the assumed 
natural history of tuberculosis (particularly whether exogenous reinfection occurs), the properties 
of the vaccine—whether it offers complete or only partial protection; whether it protects against 
initial acquisition, exogenous reinfection, or progression; whether it promotes recovery from latent 
infection; and whether its effects wane or are life-long—and the assumed vaccine coverage.

Population Age Structure
For simplicity, many models do not incorporate population age-structure. However, there are 

several reasons why incorporation of age-structure is desirable. Firstly, there is evidence that the 
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risk of active disease is age-dependent (see refs. 40 and 61 for references). Secondly, protection 
from BCG vaccination wanes with time since vaccination (and effectively with age, therefore). 
Thirdly, since infection can last for many decades, TB’s transmission dynamics have long time-scales 
and incorporating age structure can be important, particularly when the annual risk of infection 
changes over time, resulting in a changing age-prevalence profile. Fourthly, patterns of contact 
between individuals are often age-dependent.79 Models that do incorporate age-structure include 
refs. 30, 32, 40, 60, 61 and 80.

Interactions with HIV
Papers modelling the interaction of HIV and TB have recently been reviewed by Bacaër et al81 

Modelling in detail the natural histories of both HIV and TB leads to complex models—e.g., see 
ref. 64. A more-common approach is to simplify the modeled natural history of HIV40,45,58,81 and/
or to make HIV incidence a parameter, rather than modelling explicitly the dynamics of HIV 
transmission.49,58

Contact Patterns
Vynnycky and Fine developed a detailed, age-structured model of TB natural history and 

published a series of papers applying the model to England and Wales.61,82-85 Similar to the earlier 
models of TB, this model does not incorporate the dynamic transmission process per se, but rather 
estimates annual rates of tuberculosis acquisition by fitting to case-notification surveillance data. 
The authors argued that long-term declines in TB disease in the UK were primarily due to declin-
ing contact rates between individuals.84

Currently, what constitutes a potentially-infectious contact is poorly understood, which limits 
our understanding of relevant contact patterns. Whilst it is clear that tuberculosis is often clustered 
in households, schools and workplaces and much transmission occurs in populations living at high 
density in poorly-ventilated conditions such as prisons, homeless hostels and many hospitals, with 
transmission further associated with prolonged contact,86-89 there is also evidence that TB can be 

90-92

To date, most models of TB transmission have assumed a homogeneously-mixing population, 
although a model considering a population divided into households has been developed93 and 
then extended to incorporate both household and casual contacts.94 A recent model by Cohen 
et  al 200733 combined a more-sophisticated network structure (using the method of Read 
and Keeling95) with a more-realistic natural history of tuberculosis and found that exogenous 

infection tends to be clustered, meaning that those with TB infection typically experience a 

hence they experience a much higher force of infection that promotes their progression to active 
disease, which in turn promotes a high local prevalence for others who are infected. The same 
authors96 found that heterogeneity in the network of contacts between individuals results in 

In developed countries with a low overall incidence of tuberculosis, the disease has been found 
to have a relatively high incidence in specific sub-populations such as homeless persons, problem 
drug users and prisoners (which are often overlapping groups).88,97-99 It is not clear at present 
how much transmission occurs from these high-risk populations to the rest of the population. 
A combination of empirical work and modelling has shown that targeted screening by mobile 
X-ray unit followed by confirmatory testing can be an effective strategy for tackling TB in these 
particular groups.100-102

The Basic and Effective Reproductive Numbers of TB
Estimation and interpretation of TB’s basic reproductive number, R0, is complicated, for 

several reasons.83 Significant changes in the contact rate can occur over the long timescale of a 
tuberculosis infection, affecting the potential for a new infection to spread. Also, the proportion 
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of infected individuals who progress to infectious disease is also affected by age-specific rates of 
progression and mortality.

Furthermore, exogenous reinfection complicates the relationship between the basic reproduc-
tive number, R0 and the effective reproductive number, R(t). Without exogenous reinfection, in a 
homogeneous population at least, the relationship between R0 and R(t), is simple, with the latter 
being the product of the former and the proportion of the population that is uninfected. However, 
this relationship does not hold for TB because exogenous reinfection affects R(t) but plays no part 
in R0, the invasion threshold for a totally-susceptible population. Exogenous reinfection increases 
the proportion of infected individuals who progress to disease and hence become infectious, which 
tends to increase R(t); however, this increases the prevalence of infection, which reduces the pro-
portion of the population that is susceptible, which in contrast tends to reduce R(t).

enabling TB to persist even where R0 ! 1,103 but this phenomenon is not relevant for reasonable 
parameter values,104 as it requires those already infected to have increased susceptibility to subse-
quent reinfection, rather than reduced susceptibility due to immunity.

Modelling Strains of TB
There are three main reasons for modelling distinct strains of TB: to understand the emergence 

of drug resistance at the population level, to develop methods of analysis of DNA-fingerprinting 
data to elucidate transmission patterns and to explore the evolution of the bacterium and its 
relationship with pathogenesis and transmissibility.

Inference of Tuberculosis Transmission Patterns from DNA  
Fingerprinting Data

Tuberculosis’s variable and usually long latent period makes investigating its transmission 
dynamics challenging. Recent developments in DNA fingerprinting techniques for TB offer 
an exciting new opportunity to gain new insights into TB transmission patterns by identifying 
transmission clusters.105 The inference of transmission patterns from identification of clusters of 
related isolates is not simple, however and modelling has an important role to play in developing 
methods. Some isolates may have the same fingerprint without being part of the same local trans-
mission cluster. Conversely, incomplete sampling may mean that isolates from recent transmission 
or newly-imported strains may appear unlinked;106 however, independent importations of a strain 
endemic elsewhere may falsely appear to be a local transmission cluster. Modelling studies have 
shown that clustering due to recent transmission will tend to be underestimated, due to incomplete 
sampling.31,107 (However, a modelling study applied to the Netherlands found that in the case of 
older individuals—who were usually infected early in life when TB was more prevalent and who 
experienced reactivation—clustering overestimated the amount of recent transmission because 
those individuals were more likely to have been sources of infection, rather than recently-infected 
cases.108) Murray’s thorough modelling study31 also found that odds ratios for risk factors associ-

cluster sizes are small, or the proportion of cases sampled is low. She further concluded that, due 
to variation in these factors between studies, comparison of studies is difficult.

Drug Resistance
A key concern of tuberculosis control is combating drug resistance, which can arise through 

poor adherence to treatment and can then be transmitted. Resistance to isoniazid is relatively com-
mon; multi-drug resistant tuberculosis (MDR-TB) is resistant to both isoniazid and rifampicin. 
(It is important to note that these are phenotypic properties—i.e., there are multiple strains of TB 
that are drug-resistant.) Treatment of drug-resistant infection is much more difficult and expensive 
than normal treatment4 and, with the emergence of extensively-drug-resistant (XDR) tuberculosis 
there is a concern that some infections may become untreatable.109,110 Understanding transmission 
patterns is important to the development of effective control strategies.
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Unfortunately, the expense of testing for drug resistance has meant that in developing countries 
it has been common to place tuberculosis patients on first-line therapy unless they have certain risk 
factors for drug-resistant infection (e.g., likely acquisition from a known drug-resistant case or a past 
history of drug-resistant infection); only if therapy fails are they tested for drug resistant infection. 
Clearly, this promotes the evolution of further resistance and the transmission of drug-resistant 
strains by providing ineffective therapy for a period of months. A new diagnostic test, MODS, offers 
both faster diagnosis of infection and simultaneously determines its drug-sensitivity profile and is 
much cheaper than traditional methods.17 The most cost-effective way to use MODS remains to 
be determined18 and modelling has an important role to play in estimating numbers of infections 
averted using different protocols.

Blower et al 199638 presented the first model of the transmission dynamics of drug-sensitive 
and MDR TB; a later paper39 discussed its application to control strategies. Clearly the fitness 
of MDR-TB strains will determine how difficult MDR-TB is to combat and will determine 
whether the problem may remain localised or become more widespread. Commonly it is assumed 

efficiency. For example, the fitness of MDR-TB relative to drug-sensitive wild-type strains was 
varied in the range 70-100% in the model of Dye and Williams 200065 and in the range 10-70% 
in the model of Salomon et al,58 whilst Dye and Espinal 200156 assumed that MDR-TB’s fitness 
was 70% fitness of wild-type.

Worryingly, an in vitro study by Gagneux et al111 found that resistant strains may not necessar-

compensatory mutations acquired over time may negate it. Cohen and Murray 200457 presented a 
model that incorporates heterogeneity in the fitness of MDR-TB, which can change through muta-
tion; they found that relatively fit MDR-TB strains may emerge over time, meaning that short-term 
measures of the burden of drug resistance may not be indicative of the long-term scale of the problem. 
Blower and Chou46 developed a multi-strain model that allowed for heterogeneity in strain fitness 

resistance to multiple drugs as a consequence of suboptimal treatment. They recommended that 

by sequential acquisition of mutations could lead to the emergence of fit MDR strains.
Rodrigues et al51 report that when exogenous reinfection is relatively common, resulting in 

individuals being infected with both drug-sensitive and drug-resistant strains, the outcome of the 
resulting within-host competition which determines which strain dominates can have important 
consequences for the population-level emergence of resistant strains.

The recent emergence of extensively drug resistant tuberculosis (XDR-TB) has prompted new 
modelling work by Blower and Supervie,112 which applied the model of Blower and Chou46 and 
a more-detailed analysis by Basu et al59 of the prospects for reducing the incidence of XDR-TB 
through measures to combat nosocomial transmission in a rural South African setting. As XDR-TB 
becomes better-understood it will clearly be an important concern for further modelling work.

Host Genetic Factors and Within-Host Modelling
An area of mathematical modelling that we will not consider in detail here, but which is an area 

of growing importance, is within-host modelling.113 This aims to gain a greater understanding of the 
interaction of the pathogen and the immune system, including how latent infection is established 
and maintained, how progression to active disease occurs, the process of recovery and the effect of 
vaccination. It has been applied to the fundamentals of the interaction of M tuberculosis and the 
immune system,114-118 the impact of antibiotic therapy and the emergence of resistance119,120 and the 
effect of HIV co-infection.121 Many host-genetic factors have been associated with susceptibility 
or resistance to tuberculosis infection and there is growing interest in the possibility that strains 
of TB may be adapted to particular host populations and that this may have implications for the 
efficacy of vaccines and antibiotic therapies in different settings.4,122-127 However, there has been 
relatively little modelling work to date on the effect of host genetic factors on the epidemiology of 



135Mathematical Modelling of the Epidemiology of Tuberculosis

TB.43,44 Future modelling work is likely to combine within-host and between-host (transmission) 
modelling to get a better understanding TB evolution.

TB-Control Strategies
The first attempts to model TB were motivated by a desire to improve control programs20-29 

and this has continued to inspire much work. Models have been used to set targets for (e.g.) the 
proportion of cases found and successfully treated and how long gaining control of TB is likely 
to take under different scenarios. Since resources are inevitably limited, models can be used to 
determine the most efficient allocation of those resources. Of course, it should be remembered 
that there is uncertainty in the predicted impact of interventions, due not only to uncertainty 
in parameter estimates but also uncertainty in model structure—i.e., how the natural history of 
TB is represented in the model. Improvements in our understanding of TB’s natural history and 
transmission dynamics will obviously reduce the uncertainty of model predictions.

Modelling has been used to inform WHO’s Stop TB Strategy guidelines for the proportion of 
cases of active TB that need to be diagnosed and treated successfully in order to control TB40,60,65,128 
and to assess the impact of interventions by predicting numbers of cases averted (e.g., see ref. 128). 
Salomon et al modelling the impact of potential new, shorter DOTS regimens which may have 
lower rates of default and make more-efficient use of limited treatment resources.58 Resch et al50 
found that providing second-line drugs for resistant TB infections in Peru was cost-effective.

Treating latent infection has been recognized to have an important role because the prevalence 
of latent infection is high relative to that of active disease and there is the risk of endogenous 
reactivation (which may be prompted by HIV), as well as by exogenous reinfection, leading to 
active disease. Even if new acquisition of TB infection were to cease immediately then there would 
continue to be cases of TB disease due to endogenous reactivation for decades to come. Currie 
et al 200345 modeled the interaction between HIV and TB in Uganda, Kenya and South Africa 
and found that the most effective way to control TB epidemics fuelled by HIV was to focus on TB 
control through preventive therapy and treatment of active TB disease. Cohen et al 2006129 found 
that isoniazid preventive therapy (IPT) for HIV-positive persons with latent TB in a sub-Saharan 
African setting would reduce TB incidence at the cost of increased drug resistance, requiring poli-
cies for the effective detection and treatment of resistant TB, which would be costly. They also 
found that HAART treatment for HIV would have little short-term impact on TB transmission, 
although it would avert HIV-associated deaths. It is interesting to note that a modelling paper from 
the preHAART era also concluded that prophylaxis and treatment of active TB disease could also 
be highly effective in averting TB deaths in a population with high HIV prevalence.130

Ziv et al 200162 modeled the impact of targeted treatment for early latent TB infection, which 
has the greatest hazard of progression to active disease (with these recently-infected individuals 
identified through contact tracing, although this is not modeled explicitly) and compared it with 
a strategy of treating longer-term latent infections (which would tend to be identified through 
screening programs) and found that the former may be more efficient since it targets those at 
greatest risk of progression. They found that to achieve TB elimination by combining treatment 
of latent infection with treatment of active disease, the proportion of cases of early latent infection 
that need to be treated is lower than the proportion of cases of long-term latent infection.

Typically, combining interventions is potentially much more effective than using any one alone 
due to synergies.60 For example, even if new acquisition of infection could be halted immediately, 
endogenous reactivation would cause new cases of active disease to arise in those who are already 
infected for decades, so effective treatment strategies would still be required and any new vaccine 
(which is unlikely to be completely protective against acquisition, in any case) will become part 
of an ensemble of interventions against TB.

The most cost-effective combinations of interventions are likely to vary amongst settings and 
are likely to change with time, as the transmission dynamics of TB change as a consequence of 
interventions and other factors. For example, Ziv et al 200448 found that postexposure vaccines 
(protecting latently-infected individuals against progression to active disease) would initially 
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have a greater impact than pre-exposure vaccines (protecting against acquisition of infection) on 
reducing the number of new cases of disease in a high-prevalence setting, but that over time the 
impact of the former would decline and the latter increase.

A new vaccine may have a role to play in combating the emergence of drug-resistant strains, 

mutations increasing transmissibility. Modelling would be required to determine the necessary 
vaccine properties (minimum efficacy against acquisition or progression, duration of protection) 
and coverage.

Conclusion
Recent years have seen intense activity modelling tuberculosis, with some interesting insights 

about modeled behavior emerging. Unfortunately, much of this work is speculative because of our 
incomplete understanding of tuberculosis natural history and the slow timescales of tuberculosis 
epidemics. This slow spread of infection and emergence of disease hinders efforts to compare model 
predictions with observed patterns. Many important questions remain to be resolved regarding the 
natural history of TB infection and gaining a greater understanding of TB transmission dynamics 
requires further empirical laboratory and field work, mathematical modelling and interaction be-
tween them. Modelling can be used to quantify uncertainty due to different gaps in our knowledge 
to help identify research priorities. Fortunately, the present moment is an exciting time for TB 
epidemiology, with rapid progress being made in applying new mathematical modelling techniques, 
new tools for TB diagnosis and genetic analysis and a growing interest in developing more-effective 
public-health interventions.14 Since future field trials of vaccine candidates will occur against a 
background of BCG vaccination and TB treatment71 a key application of mathematical modelling 
will be in trial design and analysis, as has been advocated for HIV-vaccine trials.131
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Abstract

Trachoma is a major cause of blindness in the developing world and 63 million people are 
currently infected. Large-scale control programmes are being implemented to clear ocular 
Chlamydia trachomatis infection—the causative agent of trachoma—and improve envi-

ronmental conditions to reduce transmission. Chemotherapeutic intervention involves antibiotic 
administration and the effectiveness of this treatment is currently under investigation. A math-
ematical model has been developed to allow the impact of control programmes on infection and 
blinding disease sequelae to be predicted. The model has a structure that allows an important aspect 
of trachoma pathogenesis to be taken into account, namely the effect of repeated cycles of infection 
and recovery leading to scarring and the damaging disease sequelae. This novel model structure 
reproduces many age- and time-dependent epidemiological patterns observed in endemic settings 
and allows the dynamic effect of treatment on infection and disease sequelae to be gauged.

Introduction
Trachoma is the leading cause of infectious blindness in the world1 and in 1996 the World 

Health Organization (WHO) adopted a resolution for the Global Elimination of blinding 
Trachoma by the year 2020 (GET 2020). In addition, trachoma has been included among several 

2 which are currently being targeted for 
very large integrated control programmes. Mass drug administration (MDA) with the antibiotic 

a,1 strategy for trachoma control and there 
have been several recent studies whose aim has been to investigate the effect of one or several 
rounds of mass treatment for populations with varying baseline levels of disease endemicity.3-5 
One of the main findings of these studies has been that communities respond heterogeneously 
to mass treatment and in some communities a persistent reduction in infection prevalence is 
achieved whereas others return very quickly to pretreatment levels. The likelihood of eliminat-
ing the infection appears to be strongly related to the baseline prevalence and, therefore, the 
transmission environment but this relationship remains to be properly quantified. Mathematical 
models that include the salient features of disease pathogenesis and the mechanisms of contact 
and infection transmission can, when fitted to baseline data, allow control interventions to be 
simulated; the long term consequences of treatment can therefore be investigated.

a S—Surgery for trichiasis; A—Antibiotic for infection; F—Facial cleanliness; E—Environmental 
improvement.
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This chapter begins with a brief review of the mechanisms behind trachoma disease patho-
genesis and we explain that these mechanisms can lead to distributions of bacterial infection and 
disease that are observed in endemic populations. The facts pertaining to disease pathogenesis are 
then included in the construction of a simple mathematical model of the transmission of infec-
tion in a population and the progression of individuals to disease sequelae. The structure of the 
mathematical model is of interest because it combines aspects of the simple SIS approach6—most 
often used for viral and bacterial microparasitic infections—with the infection burden approach 
more commonly used to model macroparasitic infections such as helminths. The simple model 
of disease pathogenesis is shown to reproduce the population patterns of infection, active disease, 
bacterial load and trichiasis (the final disease sequela before blindness) by age. Once these static 
patterns have been reproduced, a treatment scenario can be applied to the model, which is then 
examined dynamically as it rebounds from a state of low infection back to the original endemic 
state. Mass-antibiotic treatments are modelled by assuming that the transmission context remains 
essentially the same but infected individuals are returned to their susceptible states. We examine 
the effect of antibiotic treatment on infection and disease and its implications on programmes 
to control blinding trachoma and we discuss the usefulness of modelling for control programme 
impact projections.

Disease Pathogenesis and Epidemiology
The causative organism of trachoma is the infectious bacterial agent Chlamydia trachomatis 

and ocular infection with this agent can eventually lead to a chronic conjunctivitis the most severe 
sequelae of which are corneal opacity (CO) and blindness. A first infection with the bacteria leads 
to some inflammation and usually a complete clearance; however, individuals are left hypersensitive 
to subsequent exposure and repeated infections cause chronic inflammation and, eventually, scarring 
that leads to the severe disease sequelae.7-10 The WHO simplified grading scheme—shown in Table 1 
—outlines the five progressive disease stages for use by nonspecialists working in a field setting (omit-
ting the final stage, blindness). These WHO disease grades will be used throughout this chapter.

Until recently, with the advent of sensitive Polymerase Chain Reaction (PCR)-based tools 
(compared with e.g., Giemsa staining and culture-based methods) to detect infection, the con-
nection between infection with C. trachomatis and progress to the various stages of disease has 
not been clear.11-15 However, recent qualitative and quantitative PCR studies in which it has been 
possible to detect the presence of infection with C. trachomatis and estimate the bacterial load 
in conjunctival swabs,13,14 have made it possible to examine the distribution of the infection load 
over the community and compare with disease diagnoses. These new data can, in turn, be used to 
construct and calibrate mathematical models of the pathogenesis and epidemiology of trachoma, 

Table 1. WHO simplified clinical grading of trachoma disease and disease sequelae, 
adapted from Taylor56

Criterion Definition (and WHO Acronym) Criterion Description

Trachomatous Inflammation-Follicular (TF)  At least five follicles (of at least 0.5 mm in 
diameter) on upper tarsal conjunctiva

Trachomatous Inflammation-Intense (TI)  Papillary hypertrophy and inflammation cov-
ering more than half of deep tarsal vessels

Trachomatous Scarring (TS)  Clear trachomatous scarring of upper tarsal 
conjunctiva

Trachomatous Trichiasis (TT)  One, or more than one, eyelash rubbing on 
the eyeball or signs of the eyelash’s removal

Corneal Opacity (CO)  Corneal opacity caused by trachoma, some of 
which obscures the pupil
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as will be shown in the following. These studies have also highlighted discrepancies between cases 
of disease and infection and these are probably brought about by the kinetics of infection in which, 
following clearance, disease may persist.15-17 Infection without disease, detected by PCR, may be 
a result of contamination with infections that are not replicating, an idea recently put forward in 
a new quantitative PCR study for 16s RNA expression.18

The prevalence of active disease (TF, TI in the WHO grading, Table 1) peaks for children aged 
1-5 years19,20 and drops to much lower levels in adults. Often, the larger number of adult cases of TF 
and TI are female and this is thought to be because of their more frequent contact with infectious 
children compared with males.5 The prevalence of scarring (TS), trichiasis (TT), corneal opacity 
(CO) and blindness in the youngest age groups is often found to be very low—though some recent 
studies have shown high levels in very compromised populations21,22—with a rising trend with age. 
Only a small fraction of the trachomatous disease burden for older adults is generally found to be 
corneal opacity and blindness, but the prevalences of scarring can be high.23,24 When the prevalence 
of active disease is high, the prevalence of the disease sequelae is also high, which lends support to 
the idea that repeated episodes of inflammation lead to disease progression.25-27

Infection and clinical disease tend to have a shorter duration in older adults from trachoma 
endemic communities and this may be due to an acquired immunity7 that involves cellular and 
humoral components.28,29 It is also possible that a decreased exposure to infection among adults may 
play a role in their observed shorter durations of infection. The acquired immunity tends to acceler-
ate the clearing of infection and may have only a very small protective effect against re-infection,30,31 
though some genital C. trachomatis animal models show significant levels of protection.32

Studies investigating infection loads have found strong age-dependences and in some cases close 
to half of the community bacterial load has been found in children under 1 year.14 The infection 
loads of adults are often lower than those of children which is thought to be due to the acquisi-
tion of clearing immunity with age.13 This imbalance between adults and children is particularly 
marked in communities in which active disease is hyperendemic (here considered to be where the 
prevalence is greater than 20%) and the infection tends to be more evenly distributed in lower 
prevalence populations.14 Acquired immunity is less stimulated in lower prevalence communities 
due to lower exposure levels and so the immunological reaction to infection is more similar in 
children and adults.

Another proposed mechanism for chronic inflammation and subsequent scarring disease pro-
gression involves persistent chlamydial infection and antigen release,33-38 though studies have found 
this idea very difficult to distinguish from repeated infection that is clustered in households.39

Antibiotic-Based Control Programmes
The main weapon in the arsenal against trachoma is azithromycin and this antibiotic is cur-

rently being deployed across trachoma endemic countries.40 Both theoretical and empirical studies 
have sought to answer questions regarding, for example, the frequency with which the antibiotic 
should be administered, the routes of reinfection in a community and the rate of re-emergence of 
infection and disease and what these rates tell us about the transmission environment.

The mathematical model of Lietman et al41-44 has investigated the frequency of antibiotic treat-
ment needed to eliminate C. trachomatis. In this study, the rate of re-emergence of infection leads to 
an estimate of the initial exponential rate of increase of the infection prevalence in the community. 
This rate then forms the basis of an analysis to determine the necessary treatment frequency to 
achieve a steady prevalence decline41 and the value thus obtained has been compared with data 
from a field trial (carried out by the same authors) in the Gurage zone of Ethiopia,45 where annual 
treatment was found to be sufficient for elimination at an 80% or higher coverage. This study has 
informed the WHO policy for community antibiotic treatment frequency and duration, but it 
does not include details pertaining to the natural history of infection that allow the number of 
infections experienced to be tracked. The gradual experience of infection and associated inflam-
mation, leads to scarring and consequently the disease sequelae and these phenomena are explicitly 
included in the models presented in this chapter.
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Field studies include those by Burton et al4 in the Gambia and by West et al3 and Solomon 
et al5 in Tanzania, who all look at either one-off or multiple single dose azithromycin treatments. 
Burton et al4 found that most treated villages cleared their infection 12 months after treatment 
for low initial infection levels, but that, in some, infection was reintroduced externally. Solomon 
et al5,46 have reported that, at a low endemic level, a single dose at very high coverage caused in-
fection to almost completely disappear and a second treatment 24 months later has eliminated 
infection, though here azithromycin coverage was supplemented by the use of tetracycline. West 
et al3 found that, after an initially large drop in infection, for a hyperendemic community, infection 
was reemerging 18 months after treatment.

Methods
A First Mathematical Model of Trachoma

Here, we outline two mathematical models; the first is a basic model accounting for repeat 
infection and the accumulation of scarring and the disease sequelae TS and TT (Fig. 1) and the 
second includes an active disease compartment that corresponds to the WHO grading TF/TI 
but does not model sequelae (Fig. 2). The conceptual mathematical model is based on the follow-
ing tenets (1) trachoma is a disease for which progress to the severe sequelae is dependent upon 
multiple infections; (2) while the accumulation of scars on the way to a TS or TT diagnosis may 
occur gradually, with each successive infection, it is useful to think of there being a threshold 
number of infections, beyond which an average individual might be diagnosed as TS or TT; (3) 
the duration of infection and disease tends to decrease with age, which is likely due to the acquisi-
tion of immunity that more rapidly clears infection following the experience of a greater number 
of infections; (4) bacterial infection load also tends to decrease with age, which is also likely to 
be due to a stronger infection-clearing acquired immunity in those who have experienced a larger 
number of prior infections. These tenets, centred on the response of an individual to re-infection  

Figure 1. A compartmental diagram illustrating the model described in the text. Each susceptible 
and infected compartment is connected to the compartment above so that the population 
passes up a ‘ladder’ of infection. The subscript i corresponds to the number of prior infections 
experienced. Adapted from Gambhir et al.57
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with the bacteria, can be incorporated into a simple mathematical model. The model proposed here 
is of the Susceptible-Infected (SI) framework,6 with two basic compartments; however, here each 
of the compartments is indexed by the number of infections that an individual has experienced 
prior to the current one i (see Fig. 1).

The model illustrated in Figure 1 is constructed as successive susceptible and infected 
stages, indexed by suffix i Si) 
and infected (Ii) compartments, each of which is followed by the next compartment above it. 
On progression up the ladder, individuals’ acquired immune response is assumed to result in 
more rapid clearance of infection, reduced bacterial load and more severe disease, in accordance 
with the relevant aspects of Chlamydia immunobiology outlined above. The rate of clearance 
of infection is assumed to be a function of i, with parameters estimated by fitting to available 
data on the duration of infection with age.7,47 The probability of transmission of infection from 
an infected individual by flies, fomites, or direct contact is assumed to be proportional to the 
bacterial load of that individual.

The following equations (adapted from Gambhir et al57) describe the rate of change in the 
numbers of susceptible and infected individuals of age a and at time t, experiencing their ith infec-
tion. The equations presented here are continuous partial differential equations in age and time 
and these were discretised for numerical solution using the Euler integration scheme in Matlab®. 
The three terms on the right hand side of each equation represent: (1) transmission of infection 
through contact between susceptible and infected individuals; (2) mortality of hosts; (3) recovery 
from infection.

  

(1)

Figure 2. Diagram showing a second model that includes a diseased-only class, as well as an 
infected and diseased class. This model allows the population to clear the infection yet still 
show signs of disease, a phenomenon commonly observed in field-studies.
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where � is the transmission parameter, which determines the rate at which individuals move from 
susceptible to infected states when they come into contact with one another and this parameter was 
estimated from fitting the model to the available data; w(a, a0) is a mixing matrix (in the discretised 
version of the model) describing the rate at which individuals of age a and a0 mix,6
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where �a,a0 is the Kronecker Delta;48 Na0 is the number of individuals of age a0 and . is a mixing pa-
rameter ranging from 0 (to represent random mixing among age groups) to 1 (to represent assortative 
mixing, i.e., each age group mixing only with itself, which is set here to 0.5) for an intermediate level 
of random and assortative mixing;49 #j is the infectivity of infected individuals in compartment Ij; 
�(a) is the death-rate at age a obtained from the 2001 WHO Tanzanian life table;50 and υj is the 
recovery rate of individuals in compartment Ij
other important features of the disease pathogenesis are the changing recovery rate and the infectivity 
with number of prior infections. These are outlined next.

Recovery Rate
The recovery rate per individual 5i from infection i (measured as the rate per year, so that the 

reciprocal of this value gives the average duration of infection), is assumed to follow a monotoni-
cally increasing function of i with lowest value 51 (corresponding to the recovery rate from the first 
infection) with saturating maximum value of 5∞ (corresponding to the recovery rate following a 
large number of prior infections),

� 5i � (51 – 56) exp [–� (i – 1)] � 56 (4)

Parameters 51, 56 and � were estimated by fitting the model to the mean duration of infection for 
different age groups using data already reported7 but re-analyzed by Grassly et al47 with results shown 
in Table 2 (�  represents the per infection rate of change of the recovery rate).

Table 2. Parameter definitions and values for the model obtained through maximum 
likelihood using a function combining infection prevalence, bacterial load 
and recovery rate data from a hyperendemic setting adapted from  
Gambhir et al57

Parameter Parameter Definition Value

1/51 Mean duration of first infection 13.6 months
1/56 Mean duration of infection after multiple prior infections 2.8 months
� Rate of drop of duration of infection per prior infection 0.75 infection 1

l1 Infection load per person at first infection  1.03 & 105 copies 
omp1 per swab

� Rate of drop of infection load per prior infection 0.05 infection 1

� Transmission coefficient: the rate of transmission (per year)  
 of infection between individuals 29.6 year 1
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Infectivity
The infectivity of an individual #i is assumed here to be linearly proportional to the bacterial 

load li carried by that individual, such that the maximum value of the infectivity is 1 and it decays 
with subsequent infections experienced by an individual and we assume that the load is a function 
of the number of prior infections experienced by that individual, in accordance with the decline 
in load with age that has been observed in trachoma endemic communities.4,5,14,51 We use a simple 
exponential decay, which describes a decline in the load from its initial value l1 according to the 
expression shown below,

 li � l1 exp [–φ (i – 1)] (5)

The infectivity #i is then calculated by dividing this expression by l1 such that the maximum value 
of #i is 1 and it decays exponentially with the decay constant �. The decay rate of this exponential 
is estimated from age-dependent data on bacterial load

Parameter Estimation
The model parameters (�, 51, 56, �, l1 and �) were estimated by simultaneously fitting the 

model-generated age-structured infection prevalence, rate of recovery from infection and infec-
tion load. A fit over six parameters represents a substantial search problem, so several starting 
points were used for the minimisation algorithm to increase the chance that the global minimum 
was found.

Data
The model was fitted to the published data of West et al51 (age-dependent prevalence levels 

and infection load) and Grassly et al47 (age-dependent durations of infection), both of which 
were collected prior to intervention from study sites that were hyperendemic in active disease 
prevalence.

Prevalence of Disease Sequelae with Age
A simple mechanism for the accumulation of trachomatous scarring (TS) is incorporated into 

the basic model by assuming that scarring increases with the number of prior infections. With 
worse scarring comes the more severe disease sequela, trachomatous trichiasis (TT). Corneal opac-
ity (CO), the final disease sequela prior to blindness, is not modelled here because its aetiology 
differs from that of the other sequelae. While TS and TT are caused by and worsen with repeated 
infection, CO represents something of a point of no return for individuals who have reached the 
TT stage and whose eyelids will continue to inflict mechanical corneal damage without surgical 
intervention. Since the population dynamical model here is a first attempt at capturing the relevant 
contact-related factors for infection and disease, this separate mechanical process is not included; 
however, the central importance of CO for the GET2020 goal to eliminate blinding trachoma 
means that progress to CO should be considered for inclusion in future models.

The simplest possible scheme is used to determine the prevalence of each of the sequelae: 
thresholds exist, along the ladder of infection, beyond which each of the sequelae are assumed 
to be present. Beyond the threshold corresponding to a specific sequela, that sequela is assumed 
to be detectable in the population that has reached this stage e.g., when the threshold for TT 
has been passed, both TS and TT are present. For simplicity, it is assumed here that the two 
disease sequelae can coexist with one another i.e., a person may be graded with scarring or scar-
ring and trichiasis.

Disease Sequelae and Prior Infection Number
Once the model has been fitted to the hyperendemic infection data in the endemic setting, the 

threshold infection levels for the disease sequelae TS and TT are determined. These can be found 
by comparing the model-generated disease sequelae prevalence curves—given specific threshold 
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infection numbers—with the data from the hyperendemic setting.51 The data set used for this 
hyperendemic setting, while from the same district in Tanzania as the baseline set of West et al,51 
was collected several years prior to the infection data, but it is assumed here that since there had 
been no treatment interventions prior to the MDA study, infection and disease in the district 
was in a steady state.

A Second Model Including an Active-Disease Class
The assessment of the level of trachoma in an area—a community, district, or country—is usu-

ally conducted on the basis of clinical examination. Since the primary method for the treatment 
of trachoma is antibiotic for the bacterial infection, the relation between infection and disease is 
important. In addition to the model already presented, which takes into consideration only the 
infected state, a second model—entirely separate from the first, but very similar in structure—has 
been constructed to account for active disease (TF/TI). Infection and disease are not perfectly 
coincident in trachoma and the age-structured model outlined implicitly assumes that they are, an 
assumption that allows the model to explore, with great simplicity, the epidemiological patterns of 
trachoma. However, the inclusion of a stage in which individuals are diseased allows the exploration 
of: (1) the consequences of the existence of a proportion of the population that is diseased without 
being infected; (2) the time-lag between the onset of infection and the manifestation of disease (as 
well as the lag between the cessation of infection and disease), which is of particular importance 
when infection in a community has been treated by antibiotic and, while the infection load may 
drop substantially, the signs of disease remain among many members of the population.

Due to the added complexity of investigating the effect of a diseased stage, this second model is 
not age-structured. The addition of the new diseased class allows the model population to include 
members who are diseased without at the same time being infected. However, for simplicity, in-
dividuals cannot be infected without showing clinical signs of disease. The aim here is to include 
a diseased class, since it is clinical disease (TF/TI) that is measured—more frequently than the 
infection prevalence—to determine the level of trachoma in a community.

Figure 2 illustrates the model; the main features distinguishing it from the age-structured model 
are: (1) the diseased-only state (with recovery rate from this state of 7) and (2) the new path that 
individuals can take to advance along the ladder of infection from the diseased-only state, bypass-
ing a recovered state and straight into the next infected-and-diseased state above. The addition 
of a new way in which individuals can progress along the infection ladder is intended to allow 
for the possibility that, even after antibiotic distribution has reduced the level of infection in the 
community, disease remains and there may be individuals who continue to experience disease for 
a considerable time, possibly even progressing in the severity of the disease they experience. This 
addition is intended to also capture the lag between the clearance of infection and the eventual 
clearance of disease from a community. Figure 2 shows that this additional path along the ladder 
is dependent upon the prevailing force of infection in the population, but that it is attenuated by a 
factor f. The compartments shown in Figure 2 represent a particular level of the ladder of infection 
and should have been labelled with subscripts i as for the earlier model (Fig. 1) but, for simplicity, 
these have been suppressed here.

Fitting the Model to Data
The second model was developed in Berkeley Madonna™ and fitted to data available from 

three published studies from, Upper Saloum district, Gambia;4 Rombo district, Tanzania16 and 
Kongwa district, Tanzania.3,52 Pre- and posttreatment data—with varying numbers of follow-up 
surveys following the baseline assessment—were used to determine the parameter values of the 
model using least squares fitting of the model-generated time-dependent infection and disease 
prevalence to the data.
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Results
Fitting the First Model to Static Infection and Disease Sequelae Data

Once the basic model has been simultaneously fitted to the prevalence, infection load and 
recovery rate data from the hyperendemic setting—with parameter values found to be as in Table 
2—the epidemiological model outputs can be generated as shown in Figure 3 and Figure 4. These 
figures show that the steady state hyperendemic model results in a decreasing prevalence with age 
that drops from an initially very high value (Fig. 3A), a decreasing age profile of the infectivity (pro-
portional to the bacterial load) (Fig. 3B), a decreasing profile for the duration of infection (giving 
a monotonic rise of the recovery rate) beginning at a high value and asymptoting to a maximum 
value (Fig. 3C), a rising profile with a flattening at older ages of the TS scarring sequela (Fig. 4A) 
and an almost linearly rising profile of the TT sequela starting at a critical age of around 20 years 
(Fig. 4B). The threshold number of infections for the detection of TS and TT were found to be 88 
and 130 respectively, though these numbers would be lower if, for example, age-related changes in 
contact rate were included in the model. This set of close fits to the epidemiological data suggests 

Figure 3. Age-profiles generated by the best-fitting parameters to the hyperendemic data set 
of West et al51 and—for the recovery rate—Bailey et al,7 reanalysed by Grassly et al47 (data 
displayed as square data points with 95% confidence intervals and model fits shown as solid 
lines): (A) the prevalence of chlamydial infection measured by PCR; B) the infectivity, which 
is proportional to the bacterial load, measured by quantitative PCR; C) duration of infection. 
The model was fitted simultaneously to all three data sets. Adapted from Gambhir et al.57

Figure 4. Age-profiles of disease sequelae generated by the best-fitting parameters to the 
hyperendemic data and using the disease sequelae threshold infection numbers given in the 
text. Adapted from Gambhir et al.57
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that the current paradigm for C. trachomatis pathogenesis, as encapsulated in the model, is largely 
correct. These fits form the basis for applying one or more control perturbations to the model in 
its steady state and investigating how epidemiologically relevant quantities vary though time.

Simulating Control Scenarios
The aim of the models is to simulate control scenarios based on the parameters estimated 

from different prevalence settings. Here, we give an overview of the kinds of control scenario that 
can be investigated using the model developed. We look at the effects of antibiotic treatment on 
the prevalence of infection and on active disease in what follows and we confine the study to the 
hyperendemic setting, since it is for these data that the model has been fitted.

The Effect of Mass Treatment on the Prevalence of Infection by Age
At the time of treatment, a proportion of individuals (given by the fraction: efficacy & coverage) 

is treated so that their bacterial carriage is reduced to zero and, in the model, they are moved from 
their infected state (Ii) back into the susceptible state (Si); their memory of the prior number of 
infections is retained. In Figure 5, the plot at time t � 0 shows that the prevalence of infection in 
all age groups has dropped to a much lower level than before treatment (shown by the dotted line). 
Figure 5 also shows the time development of the prevalence of infection from an initial time point 
at which mass antibiotic administration (MDA) has occurred. The efficacy, for an individual case, 
of a single dose of azithromycin is taken to be 95%53,54 and the community coverage level achieved 
is assumed to be 86% as given by West et al.51 The pattern of the spread of infection throughout 
the population following mass treatment illustrates the following main points: (1) because the 
prevalence of infection in children is higher than in the rest of the population, the same percentage 
reduction in the infected individuals in each age-group will leave a larger proportion of children 
still infected posttreatment than the rest of the population; (2) the rate at which infection returns 
to children is greater than for the rest of the population. This can be seen in Figure 6 where, in 
addition to the posttreatment prevalence of infection being greater in children than adults, the 
return to pretreatment levels of infection is particularly rapid in those under 10 years-old. There 
are two reasons for this: the rate of recovery from infection in children is lower than for adults 
and, therefore, children retain their infections for greater lengths of time causing greater prevalence 
levels; the second reason is dependent on the comparatively greater infectivity of children than 
adults in the model. Since children are assumed to interact more frequently with those their own 
age (. � 0.5 i.e., there is some assortative mixing), this greater infectivity leads to a greater prob-
ability of becoming infected and, therefore, a greater prevalence. The greater infectivity among 

Figure 5. The time development of age-profiles of the prevalence of infection, fitted to hy-
perendemic data. The pretreatment infection profile is shown at each time point as a dotted 
line. Mass treatment is administered at t � 0 and so the profile at time t � 0 corresponds with 
the moment immediately following an antibiotic mass-treatment and the infection has been 
reduced by the factor coverage x efficacy. Subsequent time point plots show the re-emergence 
of infection following the treatment.
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children is very similar to the effect of an increased frequency of exposure to infection in children 
compared with adults.

Age-Targeted Treatment
As well as the mass treatment of as large a fraction of the entire community as possible, there 

are treatment options that target those sections of the community most likely to harbour high 
infectious bacterial loads. The modelling of protocols in which household members of those who 
show signs of active trachoma are treated requires a model more fine-grained than the one examined 
here (as outlined by Blake et al58). However, it is instructive to look at the selective treatment of 
children and the impact of this treatment on the prevalence of infection in the whole community. 
Figure 5 has illustrated the effect over time of the treatment of the whole age-range at coverage 
level 86% and 1 year following treatment the hyperendemic community has already returned to 
its pretreatment prevalence of infection. While it is likely that the treatment of 0-10 year-old 
children would be a less effective strategy than community-wide treatment, because much of the 
community infection load is concentrated among children, it is not obvious that the treatment of 
children alone will not show a similar impact.

The results shown in Figure 6 illustrate the impact over time of a single treatment round of the 
population between 0-10 years. For the purpose of this illustration, the efficacy and coverage of 
the round of treatment have both been set to 100%, which, while unrealistic, clarifies the dynami-
cal picture. At the time of treatment, all individuals up to and including the age of 10 years are 
treated so that their bacterial carriage is reduced to zero and, in the model, they are moved from 
their infected state back into the susceptible state. The plot at time t � 0 shows that the prevalence 
of infection in all people under 10 years is zero while the prevalence of infection for those over 
this age remains as it was prior to treatment (dotted line). As time progresses, the prevalence of 
infection in the 0-10 year olds rises as these children come into contact with older infected people. 
Because the youngest children had, in general, experienced fewer infections than older children at 
the time that they were treated, they have lower levels of acquired immunity. They therefore clear 
infection more slowly and have higher bacterial loads when infected, resulting in a more rapid 
increase in the prevalence of infection among these children.

The dotted curves in Figure 6 represent the age-dependent infection prevalence prior to treat-
ment. By comparison with the solid curve, it can be seen that a treatment round administered to 
children under 10 years not only reduces prevalence among these children (direct impact) but 
also decreases the prevalence of infection among those of all ages (indirect impact). Moreover, 
the size of this impact can be significant. By removing infectious children from the population, 
adults benefit because they are less likely to come into contact with an infectious source. Because 

Figure 6. The age-dependent prevalence of infection following a single treatment of the 0-10 
year-old children in a hyperendemic setting. The coverage and efficacy have been set to 100% 
here to illustrate more clearly the effect of treating the 0-10 year group. Each time point fol-
lowing t = 0, immediately following the treatment administration, follows the re-emergence 
and redistribution of infection over the population. The dotted line corresponds to the infec-
tion profile pretreatment.
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the younger children tend to harbour greater bacterial loads, a large portion of the community 
infection load has been eliminated by treating these children.

The Effect of Treatment on Active Disease
The values of the parameters pertaining to the second, active disease, model, obtained through 

fitting to the pre and posttreatment data, are listed in Table 3. The parameter values for the fraction 
of the population advancing along the ladder of infection without recovery show that there is no 
consistent value obtained from fitting to the data. In the low-endemic setting the fraction is found 
to be very small, whereas for the high-endemic setting the value is very high. The model-generated 

Figure 7. The development through time of the prevalence of infection and active disease 
for the model and for recent baseline and posttreatment data4,16,51 in each of three endemic 
settings (a) Upper Saloum district, Gambia; baseline infection prevalence 3.2%, (b) Rombo 
district, Tanzania; baseline infection prevalence 9.5%) and (c) Kongwa district, Tanzania; 
baseline infection prevalence 57%). Treatment causes a sharp drop in the infection and disease 
prevalence followed by a rebound at differing rates.

Table 3. The parameters used for the active disease model. These parameters were 
obtained by fitting the model to the pre and posttreatment data of the 
three endemic settings analysed in this chapter (a) Upper Saloum district, 
Gambia; baseline infection prevalence 3.2%, (b) Rombo district, Tanzania; 
baseline infection prevalence 9.5% and (c) Kongwa district, Tanzania; 
baseline infection prevalence 57%. Note that the rate of recovery from 
the diseased-only state, denoted by 7, represents the total rate at which 
individuals recover from this state

Parameter Parameter Definition Value

1/51 Mean duration of first infection 13.6 months
1/56 Mean duration of infection after multiple prior infections 2.8 months
1/71 Mean duration of first episode of disease 31 months
1/76 Mean duration of disease after multiple prior episodes 6 months
f Attenuation factor of the force of  a) very low (!0.01)
 infection for those in the b) 0.35
  diseased-only state c) 0.99
� Transmission rate: the rate of  a) 2.5 year 1

 transmission (per year) of  b) 6.4 year 1

 infection between individuals c) 20.8 year 1
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pattern obtained with the extreme values of 0 and 1 (close to the values actually obtained through 
fitting) give very similar outcomes.

Using these parameter values, the model generates outcomes for the trajectory of the prevalence 
of active disease (TF/TI) and infection pre and posttreatment. Figure 7 shows the model-generated 
prevalence levels of active disease and infection and the data to which the model was fitted, for the 
three data sets. The model curves show the two key features of the kinetics of trachoma infection 
and disease as it affects trachoma epidemiology: (1) the prevalence of infection is different from 
the prevalence of disease; in this model, the prevalence of disease is always assumed to be higher 
than that of infection; and (2) once antibiotic treatment has been administered, the prevalence 
of infection drops to a low level immediately, while the prevalence of active disease lags behind 
infection at a higher level.

Conclusion
This chapter has detailed the development of a model for ocular infection with C. trachomatis in 

a community setting. New data from qualitative and quantitative PCR (as well as 16s RNA-based 
PCR), collected at the baseline and follow-up points during trachoma control programmes, are 
providing new high resolution data on ocular infection with C.  trachomatis at individual and 
community levels. Mathematical models of trachoma transmission and control, of a kind able to 
incorporate this new data, are currently being developed in order to inform control policy for the 

of infection in which individuals progress to greater numbers of infection when they come into 
contact with infected members of the population. With increasing numbers of infections, individu-
als in the model become progressively more scarred and develop the damaging disease sequelae. 
The model, therefore, combines aspects of the SI contact framework—often used for modelling 
microparasitic infections—and the infection burden framework where, in this case, the number 

pathogenesis when multiple infections are important may prove to be useful for modelling other 
infections, such as malaria.6 Previous models of trachoma infection have not taken into account the 
progress of an individual up the ladder of infection and have had no simple way of incorporating 
disease sequelae into the framework.

The model is shown to represent adequately the pretreatment epidemiological patterns of 
trachoma in a hyperendemic setting, namely: the prevalence of infection and disease sequelae at 
all ages and the age-profiles of the bacterial load and the recovery rate.

When the model is fitted to baseline infection prevalence data from a recent antibiotic inter-
vention trial in a hyperendemic setting, the resulting age-dependent infection prevalence curve 
shows magnitudes over all ages that are very close to the observed data and the maximum point 
of the prevalence of infection is found for young children.

When a single mass drug treatment is administered to the whole age range, the infection preva-
lence drops instantaneously. Subsequently, the prevalence rises back up to its pretreatment profile, 
with the most rapid rise occurring in children due to their partially assortative mixing pattern and 
their high infectivity. In a hyperendemic setting, this infection rebound is shown to happen over 
the course of 1 year, after which the profile has returned to its pretreatment level. When only a 
subset age-range of the population is treated, the impact of the treatment is felt over all ages due 
to the decreased force of infection. However, the single treatment round is found to result in very 
little impact after a year. In a hyperendemic setting, due to the rapidity of the infection rebound, 
the WHO-recommended treatment schedule of three annual antibiotic treatments would therefore 
probably result in no lasting effect on infection or the disease sequelae. Very few cases of trichiasis 
and corneal opacity would therefore also be averted by these treatment programmes and the GET 
2020 goals in this setting would seem to be very difficult to achieve. It is therefore necessary to 
implement the full SAFE strategy, which will reduce the transmission level of the population, 
thereby reducing the endemic infection prevalence and the rate of rebound of infection following 
treatment allowing the impact of repeated rounds of mass drug administration to accumulate over 
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time. The most recent follow-up surveys from the studies used here to fit the model have found 
that, in areas with very low initial endemicities one or two high coverage MDAs may be sufficient 
to achieve elimination,46 whereas in a high-endemic setting two treatments are not sufficient to 
result in lasting drops in transmission.52

Following a single treatment, a model that includes an active disease stage generates trajectories 
in which disease prevalence is higher than infection and is found to lag behind it, reproducing these 
two key observations of field studies. This model also finds that the infection and disease rebound 
following treatment is very rapid for a setting in which initial endemicity is very high and consider-
ably slower in lower endemic communities. The relation between infection and active disease in this 
basic model can be used to inform surveys carried out by treatment programmes in which clinical 
status is measured but infection is treated: following treatment the relation between these two 
states is not simple. Easy-to-use field tests for determining the level of infection are certainly more 
reliable for infection measurement55 but while these tests are not widely available the conversion 
of active disease prevalence to an estimate of infection prevalence would be useful.

The models discussed here have focused on reproducing the progression of individuals 
through the infection ladder that appears to be so important for trachoma epidemiology and 
the progression to ocular disease. However, the models are very simple and the conclusions are 
subject to their assumptions, including: the mixing and exposure patterns with age, sensitivities to 
parameter assumptions and estimates and the deterministic nature of the model (which can also 
be adapted to a stochastic framework, taking, for example, elimination of infection into account).
The age-structured model should also be fitted to lower endemic settings and posttreatment data 
to predict properly the frequency and duration of antibiotic and nonchemotherapeutic treat-
ment interventions (e.g. see Gambhir et al57). Further refinements to the model should also focus 
on important heterogeneities such as risk groups which cannot easily clear infection, those who 
harbour particularly large infection loads or respond poorly to antibiotic treatment, as well as the 
household structure of transmission. These refinements will allow better modelling of targeted 
treatments and the prevention of infection re-emergence. As more data emerge from intervention 
trials and control programmes, the models presented in this chapter are capable of being fitted to 
these new data to allow projections to be made of the impact of treatment in trachoma-endemic 
communities. This may help guide programmes in achieving the elimination of blindness due to 
trachoma.
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Abstract

The planning and evaluation of parasitic control programmes are complicated by the many 
interacting population dynamic and programmatic factors that determine infection trends 
under different control options. A key need is quantification about the status of the parasite 

system state at any one given timepoint and the dynamic change brought upon that state as an 
intervention program proceeds. Here, we focus on the control and elimination of the vector-borne 
disease, lymphatic filariasis, to show how mathematical models of parasite transmission can provide 
a quantitative framework for aiding the design of parasite elimination and monitoring programs 
by their ability to support (1) conducting rational analysis and definition of endpoints for differ-
ent programmatic aims or objectives, including transmission endpoints for disease elimination, 
(2) undertaking strategic analysis to aid the optimal design of intervention programs to meet set 
endpoints under different endemic settings and (3) providing support for performing informed 
evaluations of ongoing programs, including aiding the formation of timely adaptive management 
strategies to correct for any observed deficiencies in program effectiveness. The results also highlight 
how the use of a model-based framework will be critical to addressing the impacts of ecological 
complexities, heterogeneities and uncertainties on effective parasite management and thereby 
guiding the development of strategies to resolve and overcome such real-world complexities. In 
particular, we underscore how this approach can provide a link between ecological science and 
policy by revealing novel tools and measures to appraise and enhance the biological controllabil-
ity or eradicability of parasitic diseases. We conclude by emphasizing an urgent need to develop 
and apply flexible adaptive management frameworks informed by mathematical models that are 
based on learning and reducing uncertainty using monitoring data, apply phased or sequential 
decision-making to address extant uncertainty and focus on developing ecologically resilient 
management strategies, in ongoing efforts to control or eliminate filariasis and other parasitic 
diseases in resource-poor communities.

Introduction
Parasite transmission modelling is becoming increasingly recognized as a vital tool in guiding 

the management of parasitic disease control or elimination and for predicting the impacts and 
benefits of competing management options.1-3 This recognition arises largely from the difficulty of 
reliably predicting the long-term impact of repeated chemotherapy on the rate of transmission of 
parasites and hence reinfection within a community, which has resulted in inducing uncertainty 
surrounding operational issues, such as the required duration of treatment and determination of 
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infection thresholds below which transmission is controlled or ceases, for most of the current 
interventions against the major parasitic diseases.4-6 It also stems from increasing recognition that 
empirical field studies alone are unlikely to provide the required information due to constraints 
on resources and time and the effects of variations in local transmission conditions which make 
generalizations from individual studies difficult. This issue is particularly problematic for para-
sites with complex life cycles like the lymphatic filarial worms, which exhibit both complicated 
transmission dynamics—and therefore likely to demonstrate complex outcomes in response to 
chemotherapeutic interventions—as well as high levels of aleatory and epistemic uncertainties in 
their transmission processes, parameters and values.4,7-13

Here, we focus on recent work in modelling lymphatic filariasis transmission to highlight how 
mathematical models of parasite transmission dynamics can play useful roles in resolving each of 
these questions and therefore provide the management decision support framework required for 
defining optimal intervention strategies and for monitoring and evaluating community-based 
interventions for controlling or eliminating parasitic diseases. A key focus is on how understand-
ing the nature of transmission dynamics, particularly with regard to complex system transitions, 
heterogeneities and uncertainties, will be crucial to informing the design of effective parasite 
management. A secondary objective is also to indicate how the application of such tools can serve 
to reveal gaps in existing knowledge on the biological controllability or eradicability of parasite 
transmission by management action and hence help guide critically required research for develop-
ing a more robust theory of parasite eradication.

Transmission Models and Decisions in Parasite Management
Informed decision-making in any parasite control programme consists of four key elements: 

(1) the setting of objectives, (2) specification of management options or actions, (3) an under-
standing of the structure and dynamics of the parasite system to be managed, i.e., how the parasite 
population responds dynamically to perturbations, and (4) periodic monitoring of the results 
of management in order to inform and possibly adjust subsequent management decisions.5,6,14,15 
Figure 1 summarizes how parasite transmission models can be used to address these elements and 
hence provide a framework for supporting the design of parasite control monitoring and evaluation 
plans. According to this schema, the key advantage of using dynamic transmission models (over 
subjective or even empirical assessment by an expert or managers) is that such models will be key 
to resolving the following four major components of a successful parasite control or elimination 
programme: (1) conducting rational analysis and definition of endpoints for different program-
matic aims or objectives, including transmission endpoints for disease elimination, (2) undertaking 
strategic analysis to aid the optimal design of intervention programs to meet set endpoints under 
different endemic settings, (3) providing support for performing informed evaluations of ongoing 
programs, including aiding the formation of timely adaptive management strategies to correct for 
any observed deficiencies in program effectiveness, and (4) addressing the impacts of uncertainty 
and complexity in developing a coherent approach to parasite management.5,6,15

Models and Quantifying Intervention Endpoint Targets
Quantifying Parasite Breakpoint Thresholds in the Human Population

Recently, we and other workers have shown that the derivation of parasite infection thresholds 
or endpoints to serve as parasite elimination targets fundamentally requires an analysis of the dy-
namic properties of the parasite transmission system, as these variables essentially represent stability 
or persistence components of (such) dynamical systems.5,8,16-18 In particular, as pointed out in the 
chapter by Michael and Gambhir (Chapter 2), the two extinction thresholds (one occurring in the 
vector-to-host transmission process referred to as the “threshold vector biting rate” and the other 
in the host-to-vector transmission process known as the “breakpoint worm burden”) that exist in 
the case of vector-borne macroparasitic diseases, such as lymphatic filariasis, arise principally as the 
result of the operation of positive density dependences acting to regulate infection, which gives rise 
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to the occurrence of multiple stable parasite states and crucially the formation of transmission system 
boundaries the crossing of which can cause a parasite population to either persist in an endemic state 
or go to an extinct state. Although our initial work has provided some estimates of the likely numerical 
values of these thresholds,8 the finding that elimination thresholds for filariasis are very sensitive to  
the local level of endemicity, vector species and specific population processes occurring in the local 
host and vector populations means that ultimately estimating reliable endpoints for a locality will 
require the fitting of the appropriate vector-species specific transmission model to site-specific infec-
tion data. Such data-driven model-based estimation is also necessitated by the often large uncertainties 
associated with model structure, parameterization (especially when such models are characterized 
by a relatively large number of parameters, as is typical with dynamic parasite transmission models) 
and prediction.3,19-21

Fitting complex ecological models to data is not a trivial task,22 especially when there is cor-
responding uncertainty and lack of detail in the site-specific infection data. However, recently we 
have extended a methodological approach based on fitting dynamic parasite transmission models 
to data using computer simulation techniques in conjunction with a Bayesian information meld-
ing (BM) method,3,19-21 to show how such methods may allow the joint use of data and dynamic 
models to quantify and test locally relevant parasite elimination endpoint values. The BM method 
(see a more detailed description given by Spear and Hubbard; Chaper 7) takes all available prior 
information on model inputs and outputs and, where available, likelihood functions for data and 
generates posterior distributions of model inputs and outputs through statistical comparisons of 

Figure 1. The potential role of parasite transmission models in integrating management actions 
and monitoring data for providing policy- and management-relevant support to the design 
and monitoring of parasite control programmes. Models can help define endpoint targets for 
intervention goals, predict the effects of management actions, aide the selection of outcomes 
and indicators for monitoring and guide interpretation of monitoring data. Feedback from 
model-based evaluation of monitoring outcomes will be vital to adapting and refining both 
management actions and the model via revealing topics for research.1 Reproduced with per-
mission from Michael E et al. Adv Parasitol 2007; 65:191-237;6 ©2007 Elsevier.
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predictions with data. The essence of the method is to initially assign to each parameter of a model 
a distribution function reflecting current uncertainty of its value and to refine these estimates from 
new information as embodied by the data. The form implemented in our analysis used: (1) uniform 
or vague prior distributions for each of the model input parameters and (2) likelihood functions for 
the available data, which in the present case are age-prevalence of infection and therefore, are assumed 
to be binomially distributed. The multidimensional space defined by the set of prior distributions 
for each input parameter is then evenly sampled 100,000 times. For each instance of a sampled 
parameter vector, the model is run and likelihoods of predictions compared to observed data are 
calculated for each of the age prevalence curves generated. We then used the Sampling Importance 
Resampling (SIR) algorithm20 to resample 500 parameter sets from the original set of 100,000 
parameter generates with a probability given by their output likelihood values. These can then be 
used to generate distributions of the model outputs, i.e., worm breakpoints, threshold biting rates 
(TBRs) and the basic reproductive ratios (R0) estimates for any given study community. Figure 2 
shows the 500 resampled age-dependent equilibrium curves obtained by the SIR algorithm plot-
ted against actual age-prevalence data from communities in East Africa (where the anopheline LF 

Figure 2. The 500 curves (blue solid lines) generated by importance resampling of the input 
parameter sets according to their likelihood for each of the datasets investigated via the ap-
plication of the Bayesian Melding model fitting approach described in the text (black crosses 
with solid black lines showing upper and lower 95%CIs of the data). The Annual Biting rate 
is given in parentheses above each of the plots. The appropriate model corresponding to 
Anopheles or Culex vector transmission species was used as required.8 A color version of 
this image is available at www.landesbioscience.com/curie.



161Transmission Models and Management of Lymphatic Filariasis Elimination

transmission model was fitted) and India (where the culicine LF transmission model was fitted). 
Each of the plotted curves is generated by a different model parameter set and the range of curves 
produced represents the uncertainty remaining in the parameters following the BM updating 
procedure. Figure 3 portrays the maximum values of worm breakpoints, the corresponding TBR’s 
and a histogram of the R0 values obtained for each of the data sets. The results highlight how this 
approach can be used to fit, refine and estimate extant uncertainty in complex dynamic parasite 
transmission models and how it may be used to estimate locally relevant elimination thresholds. 
They also show that for both the endpoints (both TBRs and mf prevalence breakpoints), not only 
can there exist a wide distribution of values consistent with the data in each study community 
when the model is fitted to mf age prevalence, but also that these thresholds can vary significantly 
between the study communities.

Vector Infection Thresholds: Theory and Empirical Data
To assess local filarial transmission elimination, it is essential also to not only determine if 

larval infection thresholds exist in the vector population that could signify parasite transmission 
elimination but also, as in the case of worm breakpoints above, to quantify what the numerical 
values of such thresholds might be. There are two principal reasons for this interest in identifying 
and quantifying these thresholds. First, clearly larval infection thresholds represent the parasite 
elimination target for drug intervention programmes in vector-borne infections, such as filari-
asis.6,23 Second, information regarding the numerical value of such vector infection thresholds is 
required if xenomonitoring tools, such as parasite DNA-based PCR poolscreen methods,24-26 can 
be deemed to be feasibly applicable, on the basis of mosquito sampling sizes, in filariasis monitoring 
programmes compared to methods based on measurement of infection in humans.6,23

Figure 3. Worm breakpoints vs. TBRs (black scatter plots) and the estimated R0s from each 
of the best-fitting parameter sets obtained from the Bayesian Melding-based model fitting to 
each of the data sets. R0 values were obtained essentially by assuming a quasi-equilibrium 
state for fast-changing variables, setting positive density-dependences to 1 and by finding the 
largest eigenvalue of the Jacobian matrix.
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Recently, we have shown how a joint stability analyses of the deterministic filariasis transmis-
sion model described in the chapter by Michael and Gambhir (Chapter 2) and analyses of vector 
infection data will be critical to address these issues. Figure 4 shows the results from a numerical 
stability analysis carried out using the deterministic model of lymphatic filariasis transmission . It 
depicts the existence of a mf prevalence breakpoint threshold of 0.53% prevalence in the human 
population (shown for culicine transmitted filariasis for given averaged values of each model 
parameter) that corresponds to a density threshold of 0.0009 L3 per mosquito in the vector 
population. However, since no L3-specific probes to monitor vector population transmission now 
exist (these would need to be based on a stage specific RNA transcript, protein or other nonDNA 
biomarker), control programs are left with estimating the comparable “all-stage infection” (mf, 
L2 and L3) prevalence figures to gainfully use the theoretical larval breakpoint results depicted 
in Figure 4. This requires investigating how L3 density per mosquito is related to L3 prevalence 
and how in turn L3 prevalence is related to prevalence of all-stage larval infection prevalence. 
Figures 5A,B show how we can use published data on mosquito dissections to derive both these 
prevalences based on estimating (1) the relationship between average L3 density recorded among 
dissected mosquitoes versus the prevalence of L3 infection observed in these mosquitoes in or-
der to obtain the threshold L3 infection prevalence (Fig. 5A) and then (2) to use this threshold 
value in conjunction with estimation of the relationship between vector L3 infection prevalence 
and overall infection prevalence again observed in published data to derive the vector overall or 
all-stages infection threshold (Fig. 5B). These results are clearly crude (e.g., the relationships are 
estimated for both culicine and anopheline mosquitoes combined and the data are derived from 
a variety of mosquito collection methods, including a mix of resting and/or biting catches);23 
nonetheless they provide a first estimate of the magnitudes of the infective L3 and overall larval 
infection threshold prevalences that may be used as preliminary transmission endpoint targets 
in the global LF elimination programme. More specifically, the results in Figures 5A,B suggest 
that in this regard if L3 infection thresholds obtained through mosquito dissections are to be 
used as endpoint targets then the relevant endpoint value could be preliminarily set as 0.085%, 
while for overall larval infection, the corresponding value would be higher at 0.65%. As noted 
by Michael et al,6 the importance of these actual threshold values is that they will play a major 
role in the choice of the infection indicator for monitoring. For example, if dissections are to be 
used for estimating infection levels in the vector population, the higher value of the overall larval 

Figure 4. Results from a numerical stability analysis of the coupled deterministic transmission 
model of lymphatic filariasis indicating the existence of a L3 larval density transmission thresh-
old (value of 0.0009 per mosquito given by the dashed line crossing the X-axis) in culicine 
mosquitoes corresponding to the existence of a mf prevalence threshold in the human host 
(value of 0.53% given by the dashed line crossing the Y-axis). Details of model and analysis 
methods are as given in Gambhir and Michael.8 Reproduced with permission from Pedersen 
EM et al. Trends Parasitol 2009; 25:319-27;23 ©2009 Elsevier.
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Figure 5. A) The relationship between average L3 per mosquito and prevalence of L3 infection 
obtained in wild-caught mosquitoes from filarial endemic communities. Each circle in the Figure 
denotes paired data on these variables obtained from mosquito samples within each study 
community (n � 29, refs. given in Pedersen et al23). The solid curve shows the fit of the negative 
binomial model relating infection intensity to prevalence given by: P M k M k k( , ) ( / )� � � �1 1

 where P is the L3 infection prevalence, M is the L3 density and k is the aggregation parameter 
of the negative binomial distribution. The model was fit to the data by maximum likelihood us-
ing binomial errors giving an estimation of k of 0.007. Application of the model to an M value 
of 0.0009 (the L3 transmission threshold density) gives a corresponding value of 0.085% as a 
potential L3 threshold prevalence for determining filariasis elimination (shown in bold on the 
graph). B) The relationship between overall all stages vector infection prevalence and prevalence 
of L3 infection obtained in wild-caught mosquitoes from filarial endemic communities. Each 
solid circle in the Figure denotes paired data on these variables obtained from mosquito samples 
within each study community (n � 63, refs. in Pedersen et al23). The solid curve shows the best 
fit quadratic logistic regression model of the form: log[ ]p

p a b X b X1 1 2
2

� � � � , where p denotes 
the prevalence of overall all stages infection, X is the prevalence of L3 infection, a represents 
the intercept and b1 and b2 represent the linear and quadratic terms respectively, with estimated 
values of a � 0.239, b1 � 0.210 and b2 � –0.008. Application of this model to the L3 threshold 
prevalence value of 0.085% gives an empirical value of 0.65% as the corresponding all-stages 
larval infection prevalence threshold (Figures in bold on the graph). Reproduced with permission 
from Pedersen EM et al. Trends Parasitol 2009; 25:319-27;23 ©2009 Elsevier.
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infection prevalence indicator, which would reduce the required sample size plus ease the effort 
of dissections for estimating this prevalence, would mean that this indicator would be the choice 
for transmission monitoring when using mosquito dissection as a method to monitor the impact 
of an intervention.23 Again, as noted for worm breakpoints, model uncertainties as well as hetero-
geneities in initial conditions between localities, such as in infection aggregation, host immunity 
and type and magnitudes of positive density dependences, will result in both a distribution of 
larval infection endpoints within communities as well as significant site-to-site variability in the 
actual values of this threshold.

Models and Design of Optimal Filariasis Intervention Strategies
Modelling for Choosing Optimal Strategies

A major utility of mathematical models of infectious disease transmission in disease control 
decision making is that by facilitating the integration of information on pathogen transmission 
dynamics with programmatic factors such as drug and other intervention efficacies, they may 
provide a powerful strategic tool for designing and planning community-based control programs 
against infectious diseases. In particular, if control targets are well defined and model structure, 
parameter estimates and outputs are validated,27-31 the predictions of such models can be used for 
finding the optimal choice among different strategies for meeting a set control-program objec-
tive.1,32 Here, we illustrate and discuss the important role that filariasis transmission models can 
play in guiding the design of optimal intervention strategies to eliminate culicine-mediated filari-
asis under different endemic and programmatic conditions, focussing in particular on the optimal 
design of the two currently proposed mass drug administration (MDA) regimens for filariasis—
i.e., combined DEC/ALB and IVM/ALB therapies—and the added impact of including vector 
control to these regimens.

Figure 6A portrays the results of model predictions of the impacts of these regimens in terms 
of the number of years required by each option to reach a target threshold of 0.5% mf prevalence 
(assumed here as the threshold for parasite elimination (but see above)) for a range of precontrol 
community prevalence or endemicity levels. Three key features of these results illustrate how such 
model simulations can support the planning and optimal design of parasite elimination programs. 
First, the dotted droplines in the figure show the feasibility boundaries, i.e., the maximum endemic-
ity level at which it would be feasible to achieve the target threshold of 0.5% mf prevalence within 
the prescribed 6 years of control, for each intervention and highlight the endemicity ranges over 
which a particular MDA (at 80% population drug coverage) or MDA plus vector control (incor-
porating a 90% reduction in vector biting) intervention strategy can successfully meet the above 
control criterion. The foremost finding here is that annual mass treatments using the combined 
IVM/ALB regimen may successfully achieve the above elimination criterion only in communities 
with up to a relatively low precontrol mf prevalence of 3.75% (at the scale of 1 ml blood sampling 
volume), while in the case of annual mass combined DEC/ALB treatments, the corresponding 
controllable precontrol community endemicity levels may be only moderately higher at around 
some 10% mf prevalence (Fig. 6A). These results clearly imply that achieving elimination of filari-
asis transmission by mass chemotherapy alone, whether by the application of the IVM/ALB or the 
DEC/ALB regimens, may not be feasible within the prescribed 6 years timeframe in areas of high 
endemicity, although clearly the DEC/ALB option (largely as a result of its greater macrofilarical 
activity1)would achieve parasite elimination for a higher range of precontrol endemicity levels 
compared to IVM/ALB treatments.

This is highlighted by the second major feature of the results, viz that for both drug regi-
mens, the addition of vector control will extend the range of endemicity levels over which it 
would still be feasible to achieve the target threshold in the prescribed 6 years compared with 
that afforded by drug treatments alone (Fig. 6A). Apart from extending the range of control-
lable endemicity levels, combining vector control with drug administration will also enable 
the achievement of the set target infection level faster and earlier compared with using each 
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Figure 6. A) Deterministic filariasis transmission model predictions of the number of years of 
intervention required by various annual MDA and combined annual MDA plus vector control 
options to achieve the target elimination threshold of 0.5% mf prevalence (44), for a range 
of precontrol community endemicity (Mf %) levels. Solid curves give predictions for IVM/
ALB (open squares) and DEC/ALB (closed squares) annual MDA regimens respectively, while 
dashed curves portray the corresponding results for each of these regimens combined with 
vector control (i.e., open squares-dashed line for IVM/ALB plus vector control and closed 
squares-dashed line for DEC/ALB plus vector control). Drug efficacy values: DEC/ALB—55% 
worm kill, 95% mf cured and 6 months mf suppression; IVM/ALB—35% worm kill, 99% mf 
cured and 9 months mf suppression; while vector control is assumed to be 90% effective in 
reducing vector biting. The lowest dashed curve with transparent squares denote the effects of 
increasing the frequency of mass treatment to the DEC/ALB plus vector control regimen. The 
droplines in the Figure serve to indicate the maximum endemicity level at which it would be 
feasible to achieve the set target threshold of 0.5% mf prevalence within the prescribed 6 years 
of control by each intervention. All results at 1 ml blood sampling volume. B) Model simulations 
of the number of years of intervention required by the mass annual DEC/ALB regimen either 
administered alone (solid lines) or with vector control (dashed lines) to achieve the 0.5% mf 
prevalence threshold for a mix of precontrol community mf prevalences (5%, 10% and 25%) 
and drug coverage values. 90% Vector control efficacy assumed. Vertical droplines show the 
optimal drug coverage required at each endemicity level by each of these options to meet the 
control criterion of achieving the 0.5% mf prevalence threshold in 6 years. Reproduced with 
permission from Michael E et al. Trends Parasitol 2006; 22:226-33;5 ©2006 Elsever.
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drug regimen alone. The number of control years thus saved by the inclusion of vector control 
to each of the two drug regimens is given by the areas between the respective solid and dashed 
lines in Figure 6A and indicates that on average between ½ to 1 year at low (!10%) and 1½ to 2 
years at moderate/high (�20%) precontrol community infection levels may be saved by adding 
vector control to each of the DEC/ALB and IVM/ALB regimens respectively (Fig. 6A). These 
findings underscore the critical role that including vector control to MDA programs can play 
in filariasis elimination programs, especially in areas of high endemicity, where the benefits of 
this combined strategy would be most apparent and in areas, such as Africa, where MDA using 
IVM/ALB is to be implemented.

A third important insight of significance to the global filariasis control initiative gained from 
the model simulations depicted in Figure 6A concerns the finding that when combined with the set 
control criterion, i.e., reaching 0.5% mf prevalence in 6 years, the addition of vector control (at 90% 
efficacy) to DEC/ALB mass treatment (at a coverage of 80%) produces a rather moderate upper 
limit to the endemicity level (approximately 18% at the scale of 1 ml blood sampling volume) that 
can be feasibly controlled even by this most effective combined strategy. This result implies that 
we need to either extend the duration or frequency of mass treatment in areas of higher precon-
trol prevalence or examine other more effective options in these areas. Indeed, model simulations 
(lower curve in Fig. 6A) indicate that increasing treatment frequency to once in every 6 months 
may substantially increase the upper limit to the endemicity level (to almost 70% mf prevalence) 
that can be feasibly controlled by the combined DEC/ALB-vector control strategy, suggesting that 
this option may well need to be considered in areas with the very highest prevalences if filariasis 
elimination is to be achieved within a reasonable timeframe in such regions.

Predictions from transmission models can also play a key role in quantifying another important 
element regarding the rational design of mass treatment programs, viz the optimal drug coverage 
needed to meet a set control criterion for various endemic conditions.1,33-35 Figure 6B shows the 
predictions made by the deterministic filariasis transmission model of the number of years of 
intervention required using annual MDA with DEC/ALB alone versus mass annual DEC/ALB 
administration plus vector control (at 90% efficacy) to achieve the 0.5% mf prevalence threshold 
for a mix of precontrol community mf prevalences (5%, 10% and 25%) and drug coverage patterns 
and exemplifies how the application of models can facilitate the derivation of optimal drug cover-
ages for drug-based intervention strategies. Several important points regarding optimal program 
design in this regard emerge from the simulations shown in the figure. A key finding is that for 
both the MDA alone and the MDA plus vector control strategies, optimal drug coverages will 
increase with precontrol infection endemicities and for both strategies this impact of variations 
in drug coverages, particularly in the case of sub-optimal coverage, in achieving a set infection 
control will be greater at higher precontrol endemicity levels compared to low precontrol infec-
tion prevalence levels (Fig. 6B).

The results in Figure 6B also highlight a final key point regarding the inclusion of vector control 
to MDA programmes, viz that for all endemic situations including vector control will lower the 
optimal MDA coverage required to meet a set control criterion compared to MDA alone. Given 
that typical coverages achieved in large-scale community treatment programmes are normally 
only around 65%,36 this result again clearly affirms the value and importance of considering the 
inclusion of vector-management options in current filariasis mass treatment programmes,1,37-39 
especially in areas with high precontrol endemicities.

Table 1 shows how these results can be summarized as a type of decision table to aide the identi-
fication of the optimal coverage needed to achieve a programme target for various precontrol com-
munity mf endemicity levels. The shaded diagonal region in the table represents the present decision 
criterion (reaching 0.5% mf threshold in 6 years) for various combinations of endemicity levels and 
coverage rates. The optimal coverage required to meet the control threshold of 0.5% in 6 years for a 
particular precontrol prevalence are then found simply by tracing the corresponding paired figures 
off this diagonal. These results not only contribute to providing a decision support framework for 
determining the optimal coverage for the successful execution of the mass treatment programme 
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under each local endemic setting—such decision tables can also provide an indication to planners 
of the added number of years of treatment that may be required in each locality if coverage falls off 
into the sub-optimal zone represented by the area above the shaded entries in Table 1.

Choosing an Optimal Strategy Under Uncertainty
While the above results are pertinent in identifying optimal strategies under conditions of low 

uncertainty regarding both program objectives as well as biology or ecology of the parasite system, 
choosing the best option and management decision-making under uncertainty in either these areas 
presents a more complex problem in parasite management.14,40,41 Recently, we have shown how 
uncertainty in transmission endpoints behooves us to take a more flexible sequential approach to 
achieving filariasis elimination based initially on attaining disease control and then proceeding to 
the target of parasite elimination when information regarding endpoints becomes better known.11 
This work, which combined analysis and quantification of the disease control threshold, mathemati-
cal modelling of the effects of MDA with IVM/ALB and economic analysis, was applied to the 
control of filariasis eradication in Tanzania, is summarized in Table 2 in terms of expected present 
costs (EPCs) and option values of strategies with and without a flexible sequential decision option 
based on exercising disease control first. The results in Table 2 depict that the EPCs of strategies that 
contain the flexibility of switching between disease control and eradication are lower than that of 
an eradication strategy in which no flexibility to either switch to disease control if eradication is not 
feasible or to embark upon eradication after disease control when eradication becomes favourable 
exists. Since the EPCs of the flexible strategies are lower than that of the inflexible eradication strategy, 
it is clear that such strategies should be preferable highlighting their optimality when uncertainty 
regarding eradication occurs. Indeed, the results show that switching to long-term disease control 
from year 5 (MDAs given every 10 years following an initial 5 annual MDAs to achieve disease 
control: Strategy 2) can be the cheapest intervention option for LF if eradication can never be 
achieved (Table 2), while the lower EPCs of Strategies 3a and b compared to Strategy 1 highlight 
the costs which can be saved by waiting for better information regarding the feasibility of eradica-
tion before switching to eradication from disease control. The value of including such flexibilities 
in the filariasis eradication program for Tanzania is given by option value figures depicted in Table 
2 and indicates that including flexible decision-making based initially on disease control can yield 
savings of between US$ 3.3 to 5.0 million depending on the feasibility of eradication (from never 
(Strategy 2) to waiting to switch to eradication at different times when knowledge and technology 
improves (Strategies 3a and 3b)). These results also clearly highlight that when substantial biologi-
cal and programmatic uncertainty exists,11 there is value in designing and implementing adaptive 
management options that will facilitate learning about the parasite system and ultimately the best 
long-term strategies for achieving overall management goals.

Table 1. Developing decision support for the design of filariasis elimination programs. 
Model predictions of the number of years required to reach a 0.5% 
microfilarial prevalence threshold using combination DEC-ALB mass drug 
treatment in relation to endemicity and coverage.1

Endemicity (Mf %)

Coverage 2.5% 5.0% 10.0% 15.0%

60% 7 9 10 12

70% 6 7 8 9

80% 5 6 7 8

90% 4 5 6 7

95% 3 4 5 6
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However, the finding of the existence of hysteresis loops in the mf prevalence/vector biting 
rate plane in filariasis transmission dynamics (see Fig. 5 in Chapter 2 by Michael and Gambhir; 
this volume) suggests that a second tactic to promote filariasis elimination might be to avoid fo-
cusing solely on meeting the objective of uncertain elimination, but to exploit the ability of even 
a relatively poor model to give fairly good guidance to promote good parasite system transitions 
(e.g., parasite elimination) and prevent bad transitions (e.g., infection re-emergence following 
control).41 Given that including vector control with MDA can, by increasing the worm break-
point threshold value reduce the resilience of the endemic state and by raising the re-emergence 
infection threshold promote the resilience of the parasite-free state,8 it is clear that a combined 
MDA/vector control strategy can play this resilience-enhancing role in facilitating and sustaining 
filariasis elimination.8,42

Models and Design of Monitoring Programs
Recently, it has been shown how by conceptualizing critical components and processes of 

parasite transmission dynamics, mathematical models of parasite transmission can provide a ra-
tional framework for undertaking monitoring and evaluation activities via their ability to unveil 
information on the following four specific areas: (1) determination of intervention endpoint targets 
to meet program objectives;6 (2) predictions regarding the expected magnitude of changes in the 
states of the parasite system under various interventions to determine if these are on track to meet 
set endpoint targets, including estimation of optimal frequency of monitoring and suggestion of 
remedial measures to get the intervention back on track;1,15 (3) determination and exploration of 
the roles of key indicators for monitoring effectiveness; and finally (4) guiding interpretation of 
monitoring results to ascertain if successful control has been achieved.43

A difficulty with the above role and use of models in monitoring programs is that it is pre-
mised on the notion that it is possible to predict and anticipate the consequences of management 

Table 2. Present value costs of LF eradication strategies for the Republic of Tanzania 
with and without sequential-decision making flexibility based on exercising 
chronic disease control options11

Strategy1 Design EPC2 Option Value3

S1 Inflexible: 10 year annual MDA 157,165,771

S2 Flexible: Switch to long-term disease 
control after 5 years of annual MDA 
when it becomes evident eradication is 
not possible

152,110,572 5,055,199

S3a Flexible: Switch to eradication with 
3 extra annual MDAs from year 10 
following disease control with 5 initial 
annual MDAs

153,822,682 3,343,089

S3b Flexible: Switch to eradication with 
3 extra annual MDAs from year 15 
following disease control with 5 initial 
annual MDAs

152,968,795 4,196,976

1Denotes the three different scenarios described in detail in the text. 2Expected present value cost of 
each strategy in US$. 3The difference between the Expected Present Costs (EPCs) of flexible state-
gies 2 to 3 over strategy 1. Represents the value (costs saved here) of retaining the option to switch 
between eradication and disease control depending on the state of eradication feasibility.   
From Michael E et al. PLoS One 2008; 3(8):e2936.11
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decisions, i.e., that once all the necessary information is gathered, a right “scientific” decision 
can be made. For filariasis (and for most other parasitic systems), given that major uncertainties 
exist in almost every area of our understanding of transmission dynamics and control, including 
(1) model and process uncertainty which gives rise to approximate thresholds and predictions 
of the effects of intervention, (2) observation uncertainty related to diagnostic tool accuracy, 
(3) the role of spatial and population ecologies on the sampling process, (4) intervention un-
certainty in which there is little reliable information available regarding the effectiveness of the 
various proposed interventions to reduce or interrupt parasite transmission,5,15 and (5) that the 
transmission dynamics is likely to be furthermore ecologically complex,8 it is clear that taking 
such a traditional anticipatory approach to management is problematic. This highlights that a 
major role of monitoring programs should be to provide data that can be used to develop our 
knowledge of parasite system dynamics and responses to management. In particular, in the face 
of complex infection dynamics, there is a need to plan and use monitoring data to identify the 
alternate attractors accessible to the parasite infection system, the feedbacks which maintain 
the system at the attractors, the external ecological influences (environmental, vector species, 
vector and human migration) which define the context for a specific attractor and conditions, 
including interventions, which allow or promote “good” flips between attractors.41

The above considerations suggest that there is an imperative need to modify existing com-
mand and control management models for filariasis control based on globally-set targets in 
order to account for the complexity and uncertainty in parasite system dynamics and resulting 
intervention thresholds that are likely to vary from site to site.8 Specifically, we identify here a 
need to develop an adaptive management plan that (1) acknowledges uncertainty and system 
complexity, (2) actively contemplates using monitoring system responses to interventions to 
learn about and reduce uncertainty in system models and (3) anticipates that future manage-
ment interventions will be modified as we gather information and learn more about system 
behaviour. Such an approach must also link monitoring data with robust methods, such as 
Bayesian analysis, that allow ready and effective updating of new information to refine model 
structure or reduce parameter uncertainty. This approach will also require a change in attitudes 
to implementing parasite interventions for at its core it argues for the use of interventions as 
natural experiments to compare selected policies or practices in order to evaluate alternate 
hypotheses about the parasite system being managed.6 This is in sharp contrast to the current 
rigid top-down anticipatory management strategies used for parasite control, which sees such 
deviations from set protocols as “errors” to be avoided.

Conclusion
Informed parasite management requires information about both the parasite system state at 

a given time as well as the impact that potential management actions will bring about on that 
state. We have shown here how mathematical models of parasite transmission can play a vital role 
in informing and guiding the development of filariasis elimination programs by their ability to 
provide quantitative information for decision-making in all key areas of optimal program design 
and execution, ranging from (1) initial definitions of thresholds to meet various intervention 
endpoints, (2) optimising program parameters for different endemic conditions and (3) creation 
and application of rational monitoring and evaluation plans for assessing management success. 
The results, however, have also highlighted the continuing gaps in understanding and the urgent 
need to resolve such gaps in both knowledge of parasite population dynamics and hence model 
formulation and parameterization, and the impact of stochasticity in key infection processes as 
well as intervention effectiveness—for example, currently there is little reliable information avail-
able regarding both drug efficacy rates against the underlying adult worms1 as well as the rates of 
efficacy of various vector control measures in reducing vector population size—if modelling results 
are to be reliably integrated and applied within control programs. We show how a critical advance 
will also be how best to address the impact of ecological complexity in parasite transmission if we 
are to develop a more reliable approach to parasite control management.
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Whereas new model fitting approaches based on Bayesian updating methods can be used to 
both reduce model uncertainty and gain an understanding of localized transmission complexi-
ties and sequential decision frameworks could be used to guide management policies in the face 
of uncertainty, perhaps the most important conclusion from the work described here is that this 
need to resolve uncertainties and address complexities means that control programs should also 
be sufficiently flexible to adapt to local transmission dynamics and even accommodate change in 
intervention methods as the program proceeds. Complexity in transmission dynamics also indi-
cate that several intervention methods, for example adding vector control to MDA in filariasis 
inventions, may need to be applied simultaneously or sequentially during a program to enhance 
the resilience and sustainability of “good” system transistions.8,41,42

Overall, these results thus imply that rather than using a simple “one size fits all” command 
and control approach, as currently promulgated in parasite control programs, a more nuanced 
approach focusing on using intervention and monitoring programs to aid greater learning and 
understanding of parasite system states and the forces that govern critical system transitions and 
how best to manage such transitions by interventions to achieve desired objectives, will be required 
if we are to successfully attain the goal of controlling or elimination human parasitic infections. 
Transmission models will clearly play a major role in the development and application of this 
adaptive management framework. We indicate that if science, including mathematical models, is 
to effectively support the management of large-scale control or elimination of parasitic diseases, 
including lymphatic filariasis and other major human helminths, from endemic communities, such 
management methods closely linked to and aided by models should now be urgently examined 
and deployed at all programmatic levels.
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Abstract

The purpose of infectious disease transmission modelling is often to understand the fac-
tors that are responsible for the persistence of transmission, the dynamics of the infection 
process and how best to control transmission. As such, there should be great potential to 

use mathematical models to routinely plan and evaluate disease control programs. In reality, there 
are many challenges that have precluded the practical use of disease models in this regard. One 
challenge relates to the mathematical complexity of the models, which has made it difficult for 
field workers and health officials to understand and use them. Another challenge is that, despite 
their mathematical complexity, models typically do not have sufficient structural complexity to 
consider many of the site-specific epidemiologic and disease control details that the practicing 
health official routinely considers. Moreover, most modelling studies have not been sufficiently 
explicit or exemplary in explaining how field data may be incorporated into the models to impact 
public health decision-making. In this chapter, we start with a classic model of schistosomiasis 
transmission and relate its key properties to the more detailed model of Schistosoma japonicum 
model presented in chapter by Remais and chapter by Spear and Hubbard. We then discuss how 
various controls (e.g., chemotherapy, snail control and sanitation) may be evaluated via the detailed 
model. We then demonstrate in a practical manner, using S. japonicum data from China, how field 
data may be incorporated to inform the practice of disease control. Finally, we present a new model 
structure that considers how heterogeneous populations are interconnected, which has particular 
relevance to understanding disease control and emergence in today’s highly mobile world.

Introduction
Nearly two decades ago, Woolhouse reviewed the modelling literature for schistosomiasis and 

how various disease controls may be evaluated.1,2 We remark upon his rather depressing intro-
duction, which stated that since Macdonald developed the first model in 1965 and subsequent 
reviews of the modelling literature in the 1977 and 1982 by Cohen and Barbour, respectively, the 
models had very limited impact on actual schistosomiasis control.3-5 One of Woolhouse’s reasons 
for this, which we tend to agree with, is that there exists a disconnect between disease modelers 
who focus their work on theoretical mathematics and field workers who make real-world public 
health decisions related to disease control. Another reason is that, while mathematically complex, 
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the models still lacked the realism to capture local variations and logistical constraints that affect 
the implementation and efficacy of controls. Woolhouse argues that this does not need to be the 
case. Instead, models may be one of the tools that health planners use, in addition to field experi-
ence and epidemiology in designing control programs. With this as background, we begin where 
Woolhouse left off, using the same simple schistosomiasis modelling framework to consider dis-
ease control. We discuss how the S. japonicum model presented in Chapters and 5 and 10 relates 
to the basic modelling framework and allows us to consider various disease controls, including 
chemotherapy, snail control, sanitation and health education. We then demonstrate in a practical 
manner, using S. japonicum data from China, how field data may be incorporated to inform the 
practice of disease control.

We also present a new development in schistosomiasis modelling that explicitly considers 
how heterogeneous populations are interconnected. These connections may occur via natural 
physical processes (e.g., hydrological connections via watersheds) and/or via social-economic 
processes (e.g., migrant labor or trading of buffalo). Such a model offers exciting new possibili-
ties to consider how disease control may be best practiced in highly connected environments. As 
many areas are becoming increasingly connected due to economic development, it also provides 
opportunities to evaluate the impact of changes in connectivity due improvements to road and 
irrigation networks, for example, on disease transmission and (re)introduction.

Model Framework
Schistosomiasis infection persists in over 70 countries and remains a cause of great morbid-

ity despite several opportunities in the lifecycle of the parasite to disrupt transmission.6 Figure 
1 illustrates the lifecycle for S. japoncium in China and points of possible intervention, which 
include the treatment of human hosts via chemotherapy, snail control through molluscides or 
more permanent habitat removal, improvements in sanitation and reductions in exposure (e.g., 
via health education). We describe each of these controls in more detail below.

Woolhouse’s basic model framework is based on the simplification of the worm-snail-cercar-
iae-miracidia 4-state system to a 2-state system of just mean number of schistosome worms per 
person m and the prevalence (as a proportion) of patent infections in snails y. This is reasonably 
assumed as the lifespans of the larval stages are considerably shorter than worms and snails (hours 
versus months and years). Hence, it is assumed that larvae are at equilibrium and we can simply 
model the remaining states via the following coupled differential equations (see Table 1 for a 
description of the model parameters):

dm
dt

Ny m

dy
dt

Hm y y

� �
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� �

� �( )1
 (0.1)

where each equation consists of a gain and loss term. For the worm burden equation, the gain 
term consists of the product of the number of snails N, prevalence of patent snail infection y and 
the rate of infection per person per patent infected snail �. The loss term consists of the product 
of per capita worm mortality � and the mean worm burden per person m. For the snail infection 
prevalence equation, the gain term consists of the product of the number of humans H, mean 
worm burden per person m, the proportion of uninfected snails (1 �y) and the per capita rate of 
infection of snails per schistosome �. The loss term consists of the product of per capita infected 
snail mortality � and the patent snail infection prevalence y.

The simple model above has a number of assumptions that are inherent in the underlying 
Macdonald model, upon which (0.1) is based. First, it is assumed that the helminthes are bisexual 
and that the mating probability of these worms is incorporated in the � term. Moreover it is 
generally assumed that there is equal probability of male and female larval infectivity and worms 
are monogamously paired. More importantly, the basic model ignores possible density dependent 
effects that may arise through acquired immunity. Furthermore, it is assumed that the loss of 
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miracidia from the environment due to snail infection is negligible. Snail numbers are assumed to 
be held constant, which does not account for seasonal variations or increased morbidity imposed 
by larval infection. Multiple infections of snails are ignored, as is the issue of infection latency due 
to a prepatency period. Additionally, human population numbers are assumed to be held constant, 
with homogeneous exposure to larvae occurring for the population. It also assumes humans are 
the single definite host. We comment on various extensions of the basic Macdonald model that 
relax some of these assumptions later.

Table 1. Variables in the transmission models

m Mean number of schistosome worms per person
y Prevalence of patent (shedding) infections in snails
� Rate of infection per person per patent infected snail
N Number of snails
� Worm mortality
� Rate of infection of snails per schistosome
H Number of humans
� Snail mortality
k Aggregation parameter for schistosomes in the human host
� Mating probability of schistosomes
TSH Snail to human transmission rate
THS Human to snail transmission rate
P Prevalence of human infection

Figure 1. Schistosome lifecycle with main opportunities for control shown in parentheses. 
1) Humans become infected by the free-swimming cercarial form of the parasite from skin 
contact with contaminated surface water. 2) Once infected, adult schistosome worms will 
develop in the portal veins of the liver or bladder depending on the species of schistosome. 
Male and female worms will mate and produce eggs, which are released in either the feces 
or urine. 3) Inadequate sanitation results in parasitic eggs being deposited into an aquatic 
environment (e.g., ponds, irrigation ditches), where they hatch into a free-swimming miracidial 
form of the parasite. 4) Miracidia infect the snail intermediate host, which lives in these aquatic 
environments. 5) After a prepatency period, infected snails will begin to release cercariae, 
which infect humans to complete their lifecycle.
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Classically, the approach to studying the Macdonald system is first to evaluate the equilibrium 
solutions of the model. Equilibrium for each state denoted as m* and y* are reached when both the 
mean worm and patent snail infection prevalence reach a stable unchanging level (i.e., where dm/
dt � 0 and dy/dt � 0). In discussing this equilibrium it is helpful to define the following terms:

T N
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�

�

�
�

�
�
H  (0.2)

where TSH considers those parameters that relate to snail-to-human infection and TMS considers 
those that relate to human-to-snail infection.

The equilibia then can be described according to a quantity known as the basic reproduction 
number, R0:

R T TSH HS0 =  (0.3)

When R0 !�1 then the system does not sustain transmission and the equilibrium values are:
m
y
*
*
=

=

0
0  (0.4)

However, when R0 ��1 there exists a positive equilibrium at:
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Hence, an important property of the basic schistosomiasis model is that endemic infection 
will exist for a population when the Basic Reproduction Number, R0 ��1.

We note that R0 is explicitly defined by the snail-to-human and human-to-snail infection 
parameters. However, these terms can be factored into more specific terms, as we saw in the 
Macdonald-like S. japonicum model of Chapter 7. Indeed, we note even in Macdonald’s early 
work, there was a distinction between biologic and site-specific variables (synonymous with the Ps 
and Pb variables, respectively mentioned in Chapter 7). For instance, the probability of a cercaria 
finding and infecting a suitable host, (Macdonald’s so-called “exposure factor”) may depend upon 
a biologic constant representing the efficiency of cercarial penetration and a site-specific variable 
that relates to the number and characteristics of water contacts made by hosts.

In Macdonald’s work, considerable detail is spent in describing the effect of adding more detailed 
mating probability function � as one of the factors that makes up the � term. It is assumed that 
male and female schistosomes infect with equal probability, but mate at random, with at least two 
worms, one of each sex required for mating. The results of adding the mating probably function 
is the establishment of break point in the system, which concerns the resulting equilibrium when 
the parasite is introduced into a community. As described by Woolhouse,1 a constant mating 
probability results in any parasite introduction establishing endemic transmission (positive m* 
and y*). However, when a more realistic assumption that the mating function depends upon the 
aggregation of worms in hosts (typically regarded as negative binomial distributed), an unstable 
break point occurs in the system, such that parasite introductions below a threshold do not es-
tablish transmission (i.e., the system will fall to m* � 0 and y* � 0 equilibrium). Conversely, when 
there is a sufficient introduction of parasites, then endemic transmission will be established (i.e., 
the system will settle on the m* ��0 and y* ��0 equilibrium).

From a control perspective there are thus two theoretical goals in eliminating transmission. One 
goal may be to reduce the longer-term potential for transmission such that R0 !�1. Alternatively, 
another goal may be to perturb the system so much as to bring the system below the break point, 
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whereby it will fall to the 0, 0 equilibrium. We note, however, that accomplishing either says noth-
ing of the dynamics (how long it will take) for transmission to be eliminated. We deal with this 
issue of system dynamics later, after we first explore how the simple Macdonald model performs 
for real-world data.

A Crude Estimate of R0 for S. japonicum Based on Macdonald ’s Model
Based on the simple Macdonald model’s equilibria equations (0.5) for endemic transmission, 

we note a rather surprising finding: the only field data required to estimate R0 is snail infection 
data. Note that y*, the equilibrium patent snail infection prevalence (expressed as a proportion) 
is the sole estimator for R0:

y
R

*� �1
1

0

In China, as in many other places the proportion of snail surveyed that are patent infected 
typically does not exceed 0.05. In our study of 20 villages in Xichang county in Sichuan Province,7 
we found the highest snail prevalence to be 0.03. Substituting 0.03 for y*, results in a solution for 
R0 of 1.03. Because R0 �1, the condition for endemic transmission is satisfied.

Control Needed to Terminate S. japonicum Transmission Based  
on Macdonald ’s Model

The above estimate of R0 8 1.03 is surprising because it seems so small. One way to sustainably 
eliminate transmission is by reducing the potential for transmission by driving R0 !�1. We must 
effectively transition from a R0 of 1.03 to an effective reproduction number R (the common term 
for R0 after control has been implemented) of !1. We note that because of the following definition 
of R0, there are many possible control options to bring R !�1:

R T T N H
SH HS0 � �

� �
�� (0.6)

In other words we need the following solution:
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where L represents a factor that reduces R0 sufficiently to bring R !�1. In this case, to terminate 
transmission, L must be !0.97. It is quite shocking that only a 3% reduction in R0 would terminate 
transmission. It is even more shocking when one considers that factor L could come from any of 
the possible controls and even combinations of controls.

Routine chemotherapy can be implemented as an increase in �, the per capita mortality of 
schistosomes:8 

� �' ln( ' )� � �1 g h (0.8)

where g’ is the coverage rate and h the efficacy, both as proportions. The increased mortality es-
sentially results in a decrease to TSH, thereby creating R !�R0. And our goal is to obtain:

Indeed, if we assume a fairly non-aggressive control strategy that consists of a coverage rate of 
single treatment every 2 years and 70% efficacy when the natural lifespan of worms is 3 years, 
working through the calculation suggests this strategy would be more than sufficient to eliminate 
transmission (at least eventually, at equilibrium)! Similar arguments could be made for relatively 
easy elimination through snail control by modifying N 9�N ’, improved sanitation by modifying 
� 9 ��’ and reducing exposure by modifying ��9 ��’ (see2 for examples of how these additional 
controls may be implemented).
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Problems Inherent in the Macdonald Model Assumptions
The above analyses suggest that with such low R0 (i.e., slightly above 1), it should be easy to 

terminate transmission. If only it were so easy in the real world! Indeed, because the Macdonald 
model is unrealistic in its assumptions, the equilibria conditions are thus unrealistic.

Barbour was quite vocal about the limitations of the basic Macdonald model, attempting to 
improve the model (or “rescue it” as he states) by accounting for various heterogeneities that may 
scale R0 upwards.9,10 Specifically, Barbour accounts for snail latency to patency by the addition 
of a full snail population submodel based on S. japonicum data,11 spatial heterogeneity in water 
contacts and age-dependent immunity.9 Despite various attempts to rescue the model, the values 
of R0 from variations on Macdonald’s model may still be unrealistically low.10

We note that in Chapter 7, for our calibrated Macdonald-like model for S. japonicum, we arrived 
at an approximate R0 (or R’ representing the prefiltering calibration criterion) of approximately 4. 
Moreover, as this is a prefilter criterion, it is an upper limit on R0! Again, using chemotherapy as an 
example, two treatments per year with 70% efficacy should eliminate transmission for this region of 
China—something that is already being conducted in many endemic areas of China. However, it 
is important to note that we still have not considered how long it would take to reach elimination, 
which we discuss later in terms of the dynamics of the system. We only note here that there may be 
benefits to combining chemotherapy with other more sustainable disease control strategies.

Still, there remain other heterogeneities that have not been widely considered. For one, 
more work is needed to consider age-acquired immunity, for which there is evidence for various 
Schistosome species, although the role of age-acquired immunity in S. japonicum, in particular, 
remains unclear.12 In addition, the presence of animal reservoirs may need to be considered for some 
environments particularly for S. japonicum, as over 40 different wild and domestic mammals have 
been shown to play a role in transmission.13 Stochastic effects and the transport of parasites between 
connected environments may also create heterogeneities that modify R0, the latter discussed in 
greater detail below. Space and time-varying effects, such as attenuations that may occur through 
the synchrony of exposure may also modify R0. In these respects, recent studies by various modelling 
groups may be considered (e.g., for S. japonicum, age-specific or population group-specific models 
in,14,15 models of parasite persistence in connected populations,16 time-varying factors (Chapter 6) 
and inclusion of animal hosts17).

Barbour has suggested an alternative to the Macdonald model (the so-called Ross model) 
based on human infection prevalence rather than worm burden.10 The rather obvious benefit of 
such a model is that it is based on human infection prevalence, which can be measured (or at least 
approximated from the currently best-available diagnostic tests), as opposed to worm burdens 
which cannot be directly measured in humans and are difficult to relate to egg count data. Under 
Barbour’s model:

R
y P0

1
1 1

�
� �( *)( *)  (0.9)

where, as before, y* is the equilibrium infected snail prevalence and now P* is the equilibrium preva-
lence of infection in humans. Real-world values of 3% snail infection and 50% human infection, 
immediately result in values of R0 twice as high as the Macdonald model without accounting for 
any heterogeneities. Indeed, there is some acceptance of this modelling approach by those working 
in China and the Philippines on S. japonicum.15,17

Modelling Control Dynamics
As we alluded to earlier, regardless of our choice of model (e.g., Macdonald or Ross), the 

equilibrium analyses of the models only tell us the eventual equilibrium values of the system, 
but not how fast the system will arrive at those equilibria. In the real-world, there is a practical 
need to understand the comparative performance of competing control programs, which often 
depends upon what can be done in short time frames (e.g., 5-10 year control programs) and how 
large of an impact might be expected. Such issues ultimately lead to questions about the dynamic 
properties of the system.
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We note from our work, that when various heterogeneities and delays are incorporated into the 
system, analytical solutions are essentially not possible. Thus, numerical simulations are required 
to understand the equilibrium and dynamics of the system. Moreover, often quite complex models 
are numerically simulated and calibrated to field data, which can be computationally intensive. 
Thus, in Chapter 7, considerable attention was paid towards optimizing simulation times via 
tricks, such as prefiltering the parameter space based on R0. Indeed, in our work, we have spent 
considerable time to model the dynamic behavior of various combinations of disease controls (e.g., 
various combinations and levels of chemotherapy, snail control and sanitation).14 We note also that 
the dynamics of these controls may act differently. For instance, in contrast to the Anderson-May 
method of modelling a chemotherapy program as described above,8 we have modeled chemotherapy 
as a resetting of the worm burden state (i.e., an instantaneous drop in worm burden when chemo-
therapy is provided), which can lead to disease elimination when considered in terms of the break 
point phenomenon of the model system. In contrast, snail control may be implemented either as a 
instantaneous drop in snail populations, reduction in snail habitat, or additional mortality, which 
depends on how the snail control was implemented. Thus, some disease control strategies may be 
used to yield immediate effects on reducing disease morbidity (good public health benefit), while 
others may be aimed at long-term, sustainable disease control (moving towards disease elimina-
tion). This can be clearly seen in the time-series figures of that show sudden drops in worm burden 
due to chemotherapy, but gradual reductions in transmission over time due to combined control 
of snails and/or sanitation.14

Given the above dual objectives for disease control, it is interesting to comment upon the 
various stages of schistosomiasis control in the world. Global schistosomiasis control policy 
currently focuses strongly on the distribution of praziquantel. As the drug has become increas-
ingly affordable, it has taken a leading role in disease control efforts.18 In contrast, 15 years 
ago, the World Health Organization placed health education, access to safe water supplies and 
sanitation at the center of schistosomiasis control efforts.19 Clearly, for some countries, drug 
treatment to control morbidity needs to remain the focus, particularly in environments where 
being able to reliably deliver the drug remains a challenge. However in China, where much of 
our work is focused, there is already good access to drugs, yet the disease persists. There is recent 
evidence of disease re-emergence and a rise in prevalence following a 10-year chemotherapy 
campaign in some endemic areas.20 The situation in China and in other middle-income coun-
tries dealing with parasitic diseases is transitioning away from asking the dynamic questions of 
how to achieve short term reductions in morbidity, but rather how to effectively reduce and/
or eliminate transmission over the long term. Moreover, a related question concerns the threat 
of disease (re)emergence and how might models be best-used to evaluate this threat in terms 
of its probability, likely time-frame and place of occurrence. Current efforts in our group are 
focused on exploring these latter issues, particularly in the context of using models to control 
and provide early warning for emerging schistosomiasis.

New Model Developments: Incorporating Population 
Heterogeneity and Connectivity

Quite early on it was recognized that one of the limitations of the simple schistosomiasis 
model was the assumption of population homogeneity, which led subsequently to adjustments 
such as those for worm aggregation and differences in exposure (e.g., different risk groups in our 
work). Still it was assumed that transmission occurred such that host populations were isolated 
from other hosts and parasite populations were isolated from other parasite populations. The real 
world, however, is made up of a complex mixture of populations that are defined by natural and 
social and political boundaries. Moreover, while parasites may be transported via hydrological or 
social networks, it is political boundaries that often govern how control is conducted in the real 
world. In China, for instance, each county organizes their own local control strategy against S. 
japonicum. In any given year, a county may decide to perform surveillance or mass control in some 
villages, but not in others.
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Increasing evidence suggests that transmission actually occurs in groupings of heterogeneous 
populations that are in fact connected to one another in varying degrees. Connections may occur 
via numerous processes, most notably via hydrological channels that transport the larval stages of 
the parasite between environments and via socio-economic connections, such as host movement 
between environments. Generally, this understanding has led to the following model as described 
by Guarie and Seto16 (modifying their notation slightly to match our’s):

dM
dt

dY
dt

C C

M M

T N Y M

T

� 	 	� �	 	 �

� 	 	

�

�

�	 �

�	

ˆ ˆ� �

�

T 1

1 ˆ̂ ˆ ( )
 	� �	 � �� H Y M Y1 �
 (0.10)

in which different heterogeneous populations are represented in matrix notation as M, a vector 
of village worm burdens and Y, a vector of infected snail prevalences. The model accounts for 
differential social contacts through the matrices :, +, per capita cercarial and miracidial outputs 
�C, �M and spatially explicit transport for cercariae and miracidia that incorporate hydrological 
connectivity, survival and mortality in the matrices TC,TM and different vectors of human H and 
snail N populations.

Various elaborations of this system have been explored by our group for S. japonicum.16,21 The 
more recent theoretical analysis of the system by Gurarie and Seto describes both the general 
characteristics of the system and a few surprising aspects that have practical disease control impli-
cations. First, we define the terms:
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which represent the contribution of social and hydrological connectivities for snail-to-human and 
human-to-snail transmission, respectively. The product of these factors and the “internal potential” 
# results in the “Basic Reproduction Matrix”:16,22

R R RHS SH� � ��̂  (0.12)

Similar to the R0 ��1 inequality for the simple Macdonald system (0.1), this matrix analog, R condi-
tions sustained transmission for the distributed-connected system (0.10). Specifically, transmission 
is sustained when the largest eigenvalue of R satisfies the condition:22

�1 1( )R �  (0.13)

We note that (0.12) and (0.13) precisely define the role that “internal potential” and “connectiv-
ity” play in transmission. Both are important in sustaining transmission. The underlying parameters 
that make up internal potential # relate to the local potential for transmission within each village 
in the absence of connectivity (i.e., R0). In fact, in the absence of connectivity, the matrices simplify 
in such a manner that each individual village’s R0 conditions transmission.

The practical implications of the system on control are large. We can show that due to con-
nectivity, infection may be high in certain villages. Yet focusing treatment on these high-infection 
villages may be inefficient. Instead, careful exploration of the network of connectivity and choos-
ing key nodes that contribute to downstream infection may be much more useful in achieving 
region-wide control. Indeed, it can be shown that the structure and characteristic of various social 
and hydrological connectivities can determine whether region-wide schistosomiasis transmission 
will occur optimally, or not at all (Fig. 2).

We have observed this in our work in 20 villages in Xichang County located in Southwest 
China: the village with the highest infection prevalence (73% of residents were infected in 
2000) was located downstream from an endemic village that pertained to a different county. 
High levels of cercariae were detected in the irrigation channels through which water entered 
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the village suggesting local infection may not only be dependent on village conditions but the 
influx of parasites from upstream.7 Despite treatment of all infected residents in 2000, infection 
prevalence was 52% only two years later. We surmise that disease control efforts in this village 
that do not address the sources of parasite import will yield transient reductions in infection. 
The connected model confirms this hypothesis and suggests a more regional perspective to 
control activities may be useful, particularly in environments like those in China where rapid 
re-infection occurs and re-emergence is common. This understanding has led most recently to 
spatial analyses aimed at identifying connected watersheds that maybe used by local disease 
control agencies to better coordinate regional control strategies (Fig. 3).

While it has not yet been explored extensively for S. japonicum, we note that the dynamics of 
such a system maybe particularly interesting from the perspective of emerging disease and disease 
spread. Because population connectivities are explicitly modeled in the system, it would be pos-
sible to consider the impacts of increasing population connectivity that might occur via improved 
infrastructure, such as road and water resource development. In some cases, as we have shown in 
our work, increased social dispersion may actually reduce the potential for transmission by mov-
ing people away from hotspots in the network that sustain infection.16 The practical analog to 
this is the increasing migration of labor away from rural environments to urban ones. Moreover, 
stochasticity may be incorporated into the model to consider the effects of chance perturbations 
to the network, including, for example, the occasional introduction of infected hosts into areas 
with low or no transmission. Such a model would allow for the identification of environments 
particularly favorable to the (re)initiation of transmission.

Conclusion
Given almost half a century of model development for schistosomiasis, surprisingly little use 

of models occurs in the planning and implementation of disease control programs. As described 
above, simple models and crude R0-based analyses allow for easy calculations of the effect of che-
motherapy and other control strategies, however, such calculations may lead to misleading results 

Figure 2. Network of connected villages with hydrological connections illustrated via arrows 
and each village’s local R0 shown in increasing shades of grey (left). Region-wide schistoso-
miasis transmission across this network can be shown to be a function of not only the local 
R0, but also the nature of social and hydrological connectivities. For example, optimal levels 
of transmission (sustained transmission occurs when �1(R) ��1) depends upon hydrology and 
does not always coincide with the most dispersed social connectivity (right). See Gurarie 
and Seto (2008).
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because of the over-simplified assumptions of these models. Accounting for various heterogeneities 
in the transmission of the parasite has led to more complex models, which have suggested that the 
disease may be more difficult to control than suggested by simpler models. Indeed, there is a trend 
towards increasingly complex models because simple models are not able to mimic real-world 
field data. Another reason for increasing model complexity may also be less justified,  simply be-
cause there exists computing power to consider such complex models via numerical simulation. 
Unfortunately, the trend towards more complex models and numerical simulation is pushing 
the field of schistosomiasis modelling outside of the realm of practical field use at the local or 
regional level. Indeed, after over a decade in our group of developing our S. japonicum model for 
China, there has not been the knowledge transfer necessary for our complex model to be run at a 
provincial-level Chinese research institute.

However, our modelling work has demonstrated some encouraging applications. The most 
important application has been the ability to use the models as an independent tool based on field 
data to assess whether current control policies seem reasonable. In this regard, we have been able to 
confirm regional and national-level policies promoting combinations of disease control measures 
as having the best chance at eliminating transmission. Much of this knowledge has come about 
from studying the more complex dynamics of the model, rather than the equilibria of the system, 
which is consistent with the practical question of how long it takes to reach appreciable levels 
of morbidity reduction from various combinations of controls. Even more encouraging are the 
recent developments in modelling heterogeneous, yet connected populations that are beginning 
to tackle some of the most challenging aspects of schistosomiasis control, such as how to reduce 
the potential for re-emergence. In our increasingly connected society, these connected models also 
have great potential to identify the impacts of changes in connectivity on transmission of parasitic 
diseases such as schistosomiasis.

Figure 3. Three-dimensional rendering of watersheds (bounded by white lines) in Xichang 
County, Sichuan Province, China, computed in a geographic information system and displayed 
in Google Earth. These visualizations were created to assist the county in better planning 
their regional control efforts by taking into account how villages may be hydrologically con-
nected to one another.
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Although many practical field decisions regarding schistosomiasis control continue to be based 
on experiential knowledge, there exists a new class of problems, for which there is little to no field 
experience. This is the case with disease emergence and re-emergence. In our group, the current 
work on developing connected models may be used to design surveillance systems and examine 
predictors of disease emergence. Such models may prove to be very useful in exploring the possible 
impacts of (re)emerging disease, making full use of the ability to run computer simulations for a 
variety of hypothetical scenarios when very little experiential knowledge is available from the field. 
Our group is also continuing our work on complex site-specific models to explore the effect of 
various mixtures of control strategies, which is very much needed to combat endemic transmission 
as well as to prevent disease re-emergence.
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Modelling Climate Change and Malaria 
Transmission
Paul E. Parham* and Edwin Michael 

Abstract

The impact of climate change on human health has received increasing attention in recent 
years, with potential impacts due to vector-borne diseases only now beginning to be under-
stood. As the most severe vector-borne disease, with one million deaths globally in 2006, 

malaria is thought most likely to be affected by changes in climate variables due to the sensitivity 
of its transmission dynamics to environmental conditions. While considerable research has been  
carried out using statistical models to better assess the relationship between changes in environ-
mental variables and malaria incidence, less progress has been made on developing process-based 
climate-driven mathematical models with greater explanatory power. Here, we develop a simple 
model of malaria transmission linked to climate which permits useful insights into the sensitivity 
of disease transmission to changes in rainfall and temperature variables. Both the impact of changes 
in the mean values of these key external variables and importantly temporal variation in these values 
are explored. We show that the development and analysis of such dynamic climate-driven transmis-
sion models will be crucial to understanding the rate at which P. falciparum and P. vivax may either 
infect, expand into or go extinct in populations as local environmental conditions change. Malaria 
becomes endemic in a population when the basic reproduction number R0 is greater than unity 
and we identify an optimum climate-driven transmission window for the disease, thus providing 
a useful indicator for determing how transmission risk may change as climate changes. Overall, 
our results indicate that considerable work is required to better understand ways in which global 
malaria incidence and distribution may alter with climate change. In particular, we show that the 
roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately 
anthropogenic effects, require further study. The work presented here offers a theoretical framework 
upon which this future research may be developed.

Introduction
The potential effects of global climate change and ozone depletion on human health have 

received increasing attention in recent years, with those due to changes in vector-borne disease 
(VBD) incidence and distribution thought to represent one of a range of major direct and indi-
rect effects.1-6 Malaria has arguably attracted the most attention of all VBDs,4,7-9 due to both the 
sensitivity of its transmission dynamics to changes in environmental variables and its status as 
one of the biggest causes of worldwide mortality due to infectious disease, with an estimated 247 
million cases in 2006.10,11
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Climate change may affect malaria transmission via changes in the ecology and behaviour of 
humans, Anopheles mosquitoes and Plasmodium parasites.11 Perhaps the most important effect will 
be on the vector population itself. Immature stages of the lifecycle are aquatic and increasing rainfall, 
leading to increased availability of breeding sites, is a strong driver of abundance. The use of precipita-
tion as an empirical predictor of incidence,12-16 besides its direct impact on vector abundance,17-22 is 
well-established. The role of temperature has also been considered in terms of its effects on vector 
abundance (as a physiological factor affecting the development rate of larvae, adult daily survival 
probability and biting rates due to increased processing rate of blood meals), local dispersal, parasite 
dynamics (such as reproduction rates as a function of temperature) and human behaviour.4,23-25

Given the links between malaria incidence and variation in environmental variables, mathemati-
cal models incorporating climate variables have been developed in recent years.7,20,26-28 The growing 
importance of these models derives from the fact that while statistical models have been useful in 
elucidating relationships between environmental variables and transmission intensity,9 process-based 
mathematical models permit a more explanatory understanding of the role of internal (due to bio-
logical processes) versus external (such as those due to changes in environmental variables) drivers 
of transmission. Dynamical models are fundamentally important, since the biological processes 
driving malaria transmission are embedded within a dynamically changing environment on a range 
of timescales. Moreover, to meaningfully capture the emergence of new outbreaks (e.g., due to 
changing climate making areas previously unsuitable for transmission more favourable, human 
movement or mosquito dispersal to previously disease-free regions), a dynamic model is required 
to capture invasion dynamics.

The modelling work to date incorporating environmental variables into dynamic transmission 
models has almost entirely focussed on the impact of changes in temperature (although see ref. 20). 
Most of the attention of previous modelling work has also been on capturing equilibrium dynamics 
based on derivation and analysis of static quantities such as R0, the basic reproduction number of 
the disease. In this chapter, we firstly consider how rainfall may be incorporated within a dynamic 
transmission model and secondly highlight how important disease transmission issues not examined 
to date can only be addressed within such a dynamic modelling framework. More specifically, we 
examine the impact of climate change on mosquito (and hence malaria) extinction due to changes 
in environmental conditions, malaria invasion dynamics in previously disease-free regions and the 
effects of temporal variability in climate variables on mosquito population dynamics, invasion 
behaviour and endemic prevalence.

Mathematical Model Development
In terms of developing a dynamic framework for understanding the impact of climate change 

on malaria transmission, a deterministic or stochastic transmission model may be developed, 
embedded within an environment assumed static or fluctuating over the timescale of interest. 
Arguably, the most realistic framework is a stochastic transmission model within dynamic envi-
ronmental conditions, in which the inclusion of environmental forcing would be key to obtain-
ing a better understanding of the effects of climate change on the spread and control of malaria. 
Despite this, little research to date has examined the effects of temporal forcing by climate (i.e., 
variability in environmental variables occurring at intra-annual (seasonal), inter-annual, decadal 
and longer timescales) on malaria transmission, despite receiving attention for other infectious 
diseases.29,30 Understanding the dynamical impact of trends and variability in climate over the next 
40 years, for instance, may affect a goal of malaria eradication by 2050. Thus, although a more 
thorough theoretical study of the effects of temporal forcing is beyond the scope of this chapter, 
a key objective of the work presented here is to begin considering how seasonality effects may be 
incorporated into models and may impact vector population dynamics, invasion behaviour and 
changes in the R0 of malaria.

We assume a deterministic model, which despite making simple biological assumptions, 
is expected to be sufficiently realistic to permit valuable insights into climate-driven malaria 
transmission dynamics. Let SM, EM and IM represent the number of susceptible, exposed (but 
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not infectious) and infectious mosquitoes respectively, along with SH and IH representing the 
analogous categories in humans (where we assume a fixed latent period of duration �H in hu-
mans). All model parameters, functional forms and baseline values assumed in this analysis are 
summarised in Tables 1-3. The model is described by the ordinary differential equations

 (1)

where the total mosquito population M(t) � SM(t) � EM(t) � IM(t) and human population 
N(t) � SH(t) � IH(t) � RH(t).

Functional Forms for Incorporating Temperature and Rainfall Effects 
and the Derivation of R0

We assume that the mosquito birth rate b depends on rainfall (through the dependence on 
breeding site availability) and temperature. Let us write the birth rate as

b R T
B p R p R T p R

T
E E L P

E L P

( , )
( ) ( , ) ( )

( )
,�

� �� � �
(2)

Table 1. Malaria model parameters

Parameter Definition (and Units)

b(R,T) Adult mosquito birth rate (per day)

�(T) Adult mosquito per capita death rate (per day)

a(T) Mosquito biting rate (per day)

b1 Proportion of bites by susceptible mosquitoes on infected humans that produce 
infection

�M(T) Duration of the sporogonic cycle (days)

lM(T) Survival probability of infected mosquitoes over the incubation period of the parasite

b2 Proportion of bites by infectious mosquitoes on susceptible humans that produce 
infection

�H Latent period of infection within humans (days)

1/� Human average duration of infectiousness (days)

M(t) Total number of mosquitoes (SM(t) � EM(t) � IM(t))

N Total number of humans (SH(t) � IH(t) � RH(t))
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where BE is the number of eggs laid per adult per oviposition, pE(R), pL(R,T) and pp(R) are the 
daily survival probabilities of eggs, larvae and pupae, �E, �L (T) and �p are the duration of each 
development stage, 1/� is the average duration of infectiousness in humans and we highlight the 
parameter dependence on daily temperature T (in ˚C) and rainfall R (in mm). The average larval 
duration depends on temperature as �L(T) � 1/(c1T ��c2),28,31 corresponding to larval daily survival 
probability pL(T) � e–(c1T�c2), while the development rate of eggs and pupae is relatively independent 
of temperature.32 While rainfall has been shown to positively correlate with malaria incidence, it 
has also been suggested that excessive rainfall may flush out larvae and breeding sites31,33 and we 
assume a quadratic relationship between the daily survival probabilities of eggs, larvae and pupae 
and rainfall. For larvae, we assume

 (3)

where pML is the maximum daily survival probability (i.e., when there is optimum rainfall for mos-
quito breeding) and RL is the rainfall limit beyond which breeding sites get flushed out and no 
immature stages survive. We assume an analogous expression for eggs and pupae. We also assume that 
temperature and rainfall act independently on the survival probability of larvae such that pL(R,T) 
� pL(R) pL(T), although this is likely to be an approximation in reality. Increased evaporation of 
breeding sites or the melting of snow packs as temperatures increase provide two examples of this. 
Substituting these expressions into (2) gives the birth rate as a function of temperature and rainfall 
and this functional form is plotted in Figure 1.

As well as b(R,T), the biting rate a(T), mosquito mortality hazard �(T) and probability l(��M)(T) 
of a mosquito surviving the duration of the sporogonic cycle also depend on temperature.4 These are 
summarised in Table 2 and plotted in Figure 2, where we additionally note that �(T) � –ln p(T) and 
l(��M)(T) � p(T)��M (T). Note that the expression in ref. 4 for p(T) is true only at favourable humidities 
for mosquito development. Survival drops off rapidly at relative humidities below 50-60%,36 high-
lighting that p(T) is also indirectly dependent on rainfall through its impact on relative humidity and 
illustrates again the interdependence of temperature and rainfall. We assume that the proportions of 
bites by susceptible mosquitoes on infectious humans (b1) and infectious mosquitoes on susceptible 
humans (b2) that produce infection are independent of environmental conditions.

Arguably, one of the most important concepts in infectious disease epidemiology is that of the 
basic reproduction number R0, defined as the average number of secondary cases generated per 
infectious individual over their duration of infectiousness in an entirely susceptible population.37 
This may be similarly defined for VBDs as the product of the number of vectors infected per person 
and the number of people infected per vector (over their respective infectious periods). While R0 
may be calculated in a variety of ways for infectious disease models, calculation for models assuming 
homogeneous mixing is relatively straight forward. The transmission model (1) has two equilibrium 

Table 2. Functional forms for parameters appearing in Equation (1)

Parameter Functional Form Units Reference

a(T) T T
D
� 1

1

Per day 34

p(T) Dimensionless 4

�M(T) DD
T Tmin�

Days 35
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states, namely the disease-free state and the endemic equilibrium. In the latter case, it is readily shown 
that the prevalence in mosquitoes is given by

 (4)

while for the human population

 (5)

where (ab1/�) is Macdonald's index of stability.35 Stability analysis about the endemic state dem-
onstrates that malaria will persist when R0 � 1 where

R
Ma b b l

N
M

0

2
1 2�

( )
,

�

� �
(6)

Table 3. Baseline parameter values assumed for model simulations

Parameter Assumed Value Units

BE 200 Dimensionless

pME 0.9 Dimensionless

pML 0.25 Dimensionless

pMP 0.75 Dimensionless

RL 50 mm

�E 1 days

c1 0.00554 (˚C days)–1

c2 –0.06737 (days)–1

�P 1 days

T1 19.9 ˚C

D1 36.5 ˚C days

b1 0.04 Dimensionless

A –0.03 (˚C2 days)–1

B 1.31 (˚C days)–1

C –4.4 days–1

b2 0.09 Dimensionless

�H 10 days

DD 111 (P. falciparum) ˚C days

105 (P. vivax)

Tmin 16 (P. falciparum) ˚C

14.5 (P. vivax)

� 1/120 days–1
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although note that this is conditional on assuming static environmental conditions. The expres-
sion for R0 when we account for fluctuations in temperature and rainfall is considerably more 
complex38 40 and we postpone a more theoretical discussion of the implications of environmental 
variability on R0 (and transmission dynamics more generally) to future work.

Vector Population Dynamics
The dependence on mosquito abundance in the nonlinear vector-human transmission term 

of (1) results in considerable sensitivity of the model to vector population dynamics. Thus, un-
derstanding the dependence of M(t) on temperature and rainfall (and seasonality therein) is key. 

Figure 1. Mosquito birth rate b (R,T) as a function of daily rainfall R (in mm) and temperature 
T (in ˚C).

Figure 2. Anopheles biting rate and survival probability and Plasmodium incubation period 
as a function of temperature.
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Adding equations in (1) related to the mosquito population gives the deterministic model for 
the vector population

d
d
M t
t

b R T T M( )
( , ) ( ) .� � �  (7)

In reality, mosquito population dynamics behave stochastically and a full understanding of the 
impact of the mosquito population on transmission dynamics requires the stochastic equivalent of 
(7). If pM(t) denotes the probability of having M(t) mosquitoes at time t, the master equation is

d
d
p t
t

b t p t t M p t b tM
M M

( )
( ) ( ) ( )( ) ( ) ( ( )� � � �� �1 11� �� �( ) ) ( )t M p tM  (8)

for M(t) � 0,1,2,… and where p–1(t) � 0. If we define the probability generating function to be 

,

it is readily shown by successively multiplying (8) by zi for each i and adding, we can convert (8) 
into a partial differential equation for G(z,t) as

�
�

� � � �
�
�

G z t
t

b t z G z t t z G z t( , )
( )( ) ( , ) ( )( )

( , )
1 1�

zz
,  (9)

which can be solved using a variety of methods. We are interested in the dependence of the mos-
quito population on temperature and rainfall and their seasonal variability, a full understanding 
of which may be obtained by solving (9). The full solution of (9), however, for the case of general 
b(t) and �(t) is complex, so we simplify the analysis by considering only the dependence of the 
dynamics on the mean values of these environmental factors, not their variability.

We consider the mosquito population in Tanzania where malaria is highly-endemic, but the 
conclusions drawn about the effects of seasonality in environmental factors are general. Using 
temperature and rainfall data from WorldClim41 (http://www.worldclim.org) and averaging across 
all regions in Tanzania, we fit the temporal profiles

T t T T t( ) ( cos( ))� � �1 2 1 11 � �  (10)

and
R t R R t( ) ( cos( )),� � �1 2 2 21 � �  (11)

giving the values in Table 4 (with the profiles plotted in Figure 3A. Substituting (10) and (11) into 
the earlier expressions for b(R,T) and �(T) and solving (7) gives the mean population dynamics 
plotted in Figure 3B, with the amplitude and frequency of vector oscillations strongly dependent on 
the seasonality factors T2 and R2. To better understand the sensitivity to variability in temperature 
and rainfall, Figure 3C plots the mean and standard deviation in mosquito numbers as a func-
tion of T2 and R2. Increasing seasonality in rainfall about a fixed mean (below the level at which 
flushing out occurs), broadly corresponding to more breeding sites, is found to always increase the 
mean size of the mosquito population, while increasing seasonality in temperature always reduces 
the vector population. Large amplitude variability in temperature is also found to drive mosquito 
populations to extinction, thus suggesting that extinction dynamics are more sensitive to changes 
in temperature than rainfall. This highlights that while understanding predicted changes in en-
vironmental variables from climate models is important, it is just as important to understand the 
impact of global warming on changes in the variability of climate variables.

Solution of (9) for general b(t) and �(t) would permit insight into the effects of climate vari-
ability on the stochastic population dynamics, but the complex and theoretical nature of the 
problem is beyond the scope of this chapter. Instead, we consider the extinction dynamics as a 
function of changes in mean temperature, fixing rainfall to simplify matters, but the analysis is 
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readily extended to include changes in rainfall at fixed temperature. When b(t) � b and d(t) � d, 
(9) can be solved using Laplace Transforms or characteristics.42 If we assume M0 initial mosquitoes, 
solution of (9) gives

G z t e z e
b z e

t M
t

( , ) ( ( ) ) ,
( )( )

� � �
� �

�
�

� �
�1 1

1 1 0  (12)

whereupon substituting z � 0 gives, as a function of temperature and rainfall, the probability that 
the mosquito population fades out at or before time t as

p t e e
b R T

T
e

T t M
T t

0

1
1 0( ) ( ) .

( , )
( )

( )
( )

( )

� �
� �
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� �
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 (13)

At extreme temperatures, mosquitoes are more likely to fade-out (e.g., due to thermal death at 
temperatures beyond around 40˚C),31 although the risk decreases with increasing rainfall when R ! 
RL. Beyond these early stages of mosquito invasion, the probability that the population ultimately 

fades out is e
b R T

T
�

( , )
( )� . Thus, reliable estimates of parameters included within the birth and death 

models (e.g., the rainfall threshold beyond which breeding sites are washed out) will enable robust 
conclusions not only about when and where mosquitoes may be driven to extinction, but also the 
implications for malaria transmission. While a full analysis of malaria fade-out requires a stochastic 
transmission model, the proportionality of vector abundance and R0 means that the above analysis 
yields useful insight into the impact of changes in climate variables on malaria elimination.

Invasion Dynamics
As well as providing a useful framework for understanding how the stochastic dynamics of mosqui-

toes may lead to the establishment of malaria as environmental conditions change, dynamical models 
are vital for capturing the invasion dynamics in previously susceptible populations. In addition to the 
direct effects of climate change on transmission, indirect effects such as those on malnutrition, poverty 
or the more frequent occurrence of extreme weather events (e.g., floods or heat waves) may also con-
tribute to changing distributions of incidence, as human and animal ecosystems and habitats become 
more susceptible. However, while malaria is, in general, most prevalent in the tropics and subtropics, 
predictions that increases in global temperatures may lead to emergence in currently temperate regions 
and at higher altitudes27 are not universally accepted.43 Nonetheless, it is well-accepted that changes 
in climate variables influential in malaria transmission are likely to cause the global distribution of 
incidence to change over the next 100 years. Thus, understanding the invasion behaviour into new 
regions represents a key challenge and one which has considerable public health implications.

Table 4. Fitted temperature and rainfall seasonality parameters for Tanzania

Parameter Definition Fitted Value Units

T1 Mean temperature in the absence of seasonality 23.2 ˚C

T2 Amplitude of seasonal variability in temperature 0.07 Dimensionless

/1 (Angular) frequency of seasonal oscillations in 
temperature

0.67 months–1

;1 Phase lag of temperature variability 1.53 Dimensionless

R1 Mean monthly rainfall in the absence of seasonality 85.9 mm

R2 Amplitude of seasonal variability in rainfall 0.98 Dimensionless

/2 (Angular) frequency of seasonal oscillations in 
rainfall

0.65 months–1

;2 Phase lag of rainfall variability 1.99 Dimensionless
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Figure 3. A) Annual temperature and rainfall profiles (10) and (11) fitted to WorldClim data41 
(http://www.worldclim.org) averaged across Tanzania, (B) predicted mosquito population dy-
namics for Tanzania from the solution to (7) (with parameters from Tables 2 and 3) and (C) the 
solution to (7) as a function of increasing seasonality in temperature (T2) and rainfall (R2).
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Again, a more detailed stochastic transmission model, incorporating seasonally-varying en-
vironmental variables, is required for a more thorough understanding of invasion dynamics, but 
considerable progress about the expected behaviour can be obtained from (1). When most of the 
population are initially susceptible, SH(t – �H) ? N and SM(t – �M) ? M, whereupon substituting 
into (1), the invasion dynamics are described by

 (14)

 (15)

and we look to solve for the growth rate of IH(t). We approach this problem in a way that allows 
illustration of the method and thus how to apply the technique to more complex transmission 
models.

In essence, we look to rewrite the system as a single equation in IH(t) and its derivatives, which we 
note currently depend on factors proportional to 1, IM(t), IM (t – �H) and dIH(t)/dt. Here, we have 
a dependence on four factors, but only two independent equations. However, a third independent 
equation may be obtained by differentiating (14), since this will depend on some combination of 
the same four factors. Considering the resultant equation, together with (14), at time t � �H gives 
the three independent equations

 (16)

so that IH(t) and its derivatives now depend on three factors and we have three independent 
equations. If J is the 3 & 3 matrix with elements containing factors proportional to IH(t) and its 
derivatives, we can rewrite (16) as the matrix equation

 (17)

whereupon solving det J � 0 leads to

�� �I t I t I t R I tH H H H H( ) ( ) ( ( ) (� � � � � � � �� �� �� � �� � 0 ��M ))�0  (18)

for the number of infectious humans. Substituting the trial solution IH(t) � ert gives

r e re e R er r r rH H H M2
0 0� � � �� � ��� � � � ��( ) ( ) ,  (19)

where r is the real-time growth rate and the solution reduces to the standard growth rate equa-
tion for an SEIR model (with analytical solutions) when �H � �M � 0. Substituting parameters 
and functional forms from earlier, Tables 2 and 3 allow numerical solution of (19) and Figure 4A 
plots the outbreak doubling time TD � 1n(2)/r as a function of temperature at different mosquito 
densities. The rate of spread into a susceptible population is found to be extremely sensitive to 
temperature, with a clear window around 32-33˚C where the doubling time is shortest. At lower 
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temperatures, fewer mosquitoes survive long enough for the sporogonic cycle to complete, while 
at higher temperatures, mosquito survival probability drops off rapidly. Invasion dynamics are 
also found to be strongly dependent on vector abundance, itself driven by rainfall, with doubling 
times around 4-6 weeks at vector densities typical of rainy seasons and increasing to the order of 
months at lower abundances typical of dry seasons.

A more theoretical analysis of the effects of seasonality in the vector population on the growth 
rate has been considered elsewhere40 and the applicability of such methods to more complex 

Figure 4. A) Doubling times of a P. falciparum outbreak as a function of temperature and 
mosquito density at fixed rainfall (and in the absence of seasonality). B) Predicted doubling 
times for P. falciparum and P. vivax with and without seasonality in temperature (where m�� 
40 and all other parameters as per (A)).
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systems is beyond the scope of this chapter. However, approximate preliminary insight may be 
obtained by substituting (10), with parameter values given in Table 4, into (19) for parameters 
that depend on temperature and the results are shown in Figure 4B for P. falciparum and P. vivax. 
In the absence of seasonality, there is little difference between P. falciparum and P. vivax, with 
the latter spreading marginally quicker and potentially resulting in a greater outbreak threat at 
higher altitudes given the lower critical temperature for transmission (around 14.5˚C and 16˚C 
for P. vivax and P. falciparum respectively). Figures 4A,B combined also highlight that malaria 
invasion is considerably more sensitive to vector density than the strain of Plasmodium parasite. 
The crude inclusion of moderate seasonality in temperature, around three times greater than sea-
sonality observed across Tanzania, is found to have little effect on the doubling times, although a 
more thorough analysis is required to fully understand the effects of variability in environmental 
variables on malarial invasion.

Implications for R0 and Mapping Risk
It is readily shown from (1) that successful establishment and invasion of malaria into a previ-

ously unaffected population will lead to endemicity when R0 � 1. Given the dependence of the 
vector population dynamics on temperature and rainfall, together with the functional forms con-
tributing to R0 in Table 2, an analytical expression for R0 as a function of mean temperature and 
rainfall may be derived by substituting into (6). For the purpose of this analysis, we assume that 
the vector population is in equilibrium, so that M(R,T) � b(R,T)/�(T) and there is no seasonality 
in rainfall nor temperature (so R2 � T2 � 0). For brevity, we do not write down the full expression, 
but R0 as a function of these two variables is plotted in Figure 5.

Parameter uncertainty in the vector population model means that while precise quantitative 
conclusions should not be drawn from Figure 5, the qualitative dependence of R0, capturing both 
the population risk of malaria becoming endemic and individual infection risk, on temperature 
and rainfall remains robust to these uncertainties. As with the invasion dynamics, we observe 
a clear window for optimum malaria transmission around 32-33˚C, corresponding to where 
the balance between mosquitoes surviving long enough for completion of the sporogonic cycle 
and the rapid decline in mosquito survival at high temperatures is optimised. The approximate 
quadratic dependence of R0 on temperature also offers insight into the question of how changes 
in local transmission risk may shift due to increases in temperature. Consider an endemic region 
currently at mean temperature T experiencing an increase in temperature by an amount @T. If 

Figure 5. The dependence of R0 on temperature and rainfall.
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Tmax represents the temperature at which the R0 (T) profile peaks, it is clear that if T � @T ! Tmax, 
malaria prevalence will get significantly worse in that region, while if T � Tmax, global warming 
will lead to a decline in mosquito survival and a reduction in transmission.

For the case of Tanzania, Figure 6 plots the predicted mean temperature distribution for April 
(when rainfall peaks) under the A2a emission scenario6 (data from WorldClim and where the 
calculation of mean temperature assumes uniformly distributed temperatures between monthly 
maxima and minima). Analysis of the expression quantifying the relationship between R0 and 
temperature, and substitution of parameter values in Table 3, shows that Tmax is around 32.9˚C 
for P. falciparum and P. vivax. Temperature data presented in Figure 6 shows that the maximum 
mean temperature is predicted to be around 32.6˚C for Tanzania and thus, given the mono-
tonic relationship between R0 and prevalence from (5) and the fact that we are in the regime T 
� @T ! Tmax, we predict malaria prevalence to increase across Tanzania around the peak rainy 
season. The severity of the increase, however, will be regionally dependent and this highlights the 
need for implementation of control and mitigation strategies at a local level. Improvements in 
parameterisation of the model will lead to improved ability to make quantitative predictions about 
spatiotemporal dynamics and control, as well as addressing how changes in rainfall distribution, 
as well as temperature, may lead to changes in transmission risk. The impact of excessive rainfall, 
for instance, on vector abundance and transmission is only qualitatively captured here. Such an 
analysis also highlights the usefulness of assessing control strategies within a dynamic framework. 
Questions such as the relative magnitude and timing of interventions, as well as the impact of 
parameter uncertainty, variability and heterogeneity, be they human, mosquito or parasite, may 
also be considered, along with evaluating such questions within the context of limited resources. 
The direct impact of seasonality in vector dynamics on R0 has been considered from a theoretical 
perspective elsewhere and we postpone a more thorough analysis of the dependence of control on 
variability in environmental conditions to future work.

Figure 6. Predicted mean temperature distribution across Tanzania in April under the A2a 
emission scenario (data from WorldClim).
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Conclusion
The complex transmission dynamics of malaria are strongly influenced by environmental condi-

tions, with temperature, rainfall, humidity, wind speed and altitude, among others, shown to affect 
incidence. However, despite the opinion that malaria may represent one of the most sensitive VBDs 
to climate change over the next 100 years, most previous work on interactions between climate and 
malaria has been largely based on the use of statistical modelling approaches with little corresponding 
work carried out on using mathematical models to better understand the dynamical effects of this influ-
ence on disease transmission dynamics. Such process-based models may not only represent powerful 
tools for understanding how future trends and variability in key climate variables may affect global 
changes in malaria risk via their capacity to deal with the likely nonlinear and complex feedbacks in 

they may also represent valuable tools for policy-makers and future public health planning.1,7,11

In this chapter, we have shown the crucial need for the development of dynamic modelling 
frameworks to better understand the dependence of malaria transmission on changes in temperature 
and rainfall. The most general and probably most realistic modelling framework one could develop 
here would be a stochastic transmission model incorporating key environmental variables that are 
continuously changing. While we expect the field to undoubtedly progress towards this end, it is 
invaluable at the early stages of our understanding to construct simpler climate-linked transmission 
models that permit an understanding of how global warming may affect the burden of disease. Thus, 
using a relatively simple deterministic transmission model, we have been able to demonstrate the 
importance of accounting for the dependence of mosquito abundance on temperature and rainfall, 
which by entering the dynamical model through the nonlinear transmission term, we show can 
strongly influence the establishment probability of malaria in previously disease-free regions. The 
potential for mosquito extinction with large seasonality in temperature highlights a second key 
result, namely that it is important not only to examine the effects of future average trends in climate 
variables, but also the variability about these trends.

In reality, this variability may represent genuine fluctuations of climate variables or uncertainty 
from climate model predictions or human behaviour (corresponding to a range of possible emis-
sion scenarios). Indeed, it is clear from this chapter that seasonality and variability in climate on 
longer timescales can have profound effects on establishment, invasion and persistence and this 
remains a priority area for future research. Changes in patterns of malaria incidence due to changes 
in environmental conditions on longer timescales, e.g., due to the effects of El Niño-Southern 
Oscillation (ENSO), have been considered in the literature44 47 and this continues to merit 
further research. Similarly, it is clear that when these studies are combined with corresponding 
concepts from infection system dynamics, such as the dependence of R0 on temperature and 
rainfall and the identification of an optimal transmission window, such integrated analyses will 
prove crucial to improving understanding about how long-term global climate change will affect 
local environmental conditions and, in turn, whether a region is likely to experience a worsening 
or improvement in prevalence as global warming becomes more severe.

The results also highlight that considerable work, experimental, theoretical, modelling and 
policy-based, still remains to be statisfactorily carried out and modelled in an integrated fashion if 
we are to more realistically capture the impact of climate change on disease transmission. Although 
certain aspects of transmission dynamics are physiological (and therefore deterministic) drivers of 
transmission, it is clear that heterogeneities across the human, mosquito and parasite populations 
introduce considerable uncertainty into the system. It should also be borne in mind that a more 
realistic modelling approach should take spatial heterogeneities into account and thus realistic 
transmission models need to be spatial if they are to better predict spatiotemporal disease persistence 
and spread. A key challenge in incorporating environmental variables into malaria models is also 
selecting the appropriate scale at which to model, not only spatially, but over the most appropriate 
timescale and hierarchical level.48 This is driven not only by the resolution of available climate data 
(either from remote sensing or output from climate models), but also from the knowledge that 
modelling at too fine a scale may translate poorly into global observables, while oversimplifying 
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local heterogeneities may neglect key environmental or biological processes influencing observations. 
Another challenge is how best to integrate ecological drivers with sociological processes of disease 
transmission in vulnerable communities, an area only now beginning to be examined.1,2,23,25,26,43

The quality of incidence data, as well as the reliability and depth of experimental knowledge on 
the effects of environmental variables on the transmission cycle, also requires considerable research 
and this remains an important priority. The impact of excessive rainfall, for instance, on vector 
abundance and transmission is only qualitatively captured here. Mathematical models can thus 
act as a useful guide for data collection by identifying areas where improvements in data quality 
may lead to substantial improvements in their explanatory power.

Finally, our results also underscore the usefulness of assessing control strategies within a dynamic 
framework. In particular, we suggest that only such frameworks will allow fuller exploration of 
key questions such as the relative magnitude and timing of interventions, as well as the impact of 
parameter uncertainty, variability and heterogeneity, be they human, mosquito or parasite, along 
with reliable evaluation of these questions within the context of limited resources. The dynamical 
modelling approach described here may thus provide a useful framework not only for obtaining a 
better understanding of the integrated impact of climate change on disease transmission dynamics, 
but also to serve as a tool for policy-makers developing mitigation and intervention strategies that 
may be used to tackle the potentially tough challenges that lie ahead.
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Abstract

This chapter describes what should be an integrated approach to the genetic epidemiology 
and population genomics of Chagas disease. Many studies have been conducted on the 
genetic diversity of Trypanosoma cruzi and the various triatomine bug species able to trans-

mit Chagas disease. Far less research has analyzed the role played by the host’s genetic variability 
on the transmission and severity of the disease. An integrated genetic epidemiology/population 
genomics approach would analyze these three components of the transmission chain together 
as well as their possible interactions (co-evolution phenomena). This is facilitated by the recent 
impressive progress in mega biotechnologies and by the fact that Chagas disease is an ideal model 
for experimental evolution approaches.

Introduction
For several years, I have pleaded for an integrated approach to the epidemiology of infectious 

diseases. Most authors focus on only one component of the transmission chain of a given disease: 
either the host or the pathogenic agent, or (in the case of vector-borne diseases such as Chagas 
disease) the vector. It is clear that these three actors play a role in the same performance as part of 
a single biological phenomenon: the coevolution between the host, the pathogen and the vector. 
An integrated approach to this global phenomenon is therefore sorely needed.1,2 Scientists have 
a natural tendency to specialize, even to overspecialize. For example, my experience tells me that 
people working on the population genetics of African trypanosomes are poorly informed about 
similar studies conducted on T. cruzi. This is all the more distressing since comparative approaches 
are extremely informative, delineating the general laws that govern the evolution of organisms, 
while underscoring the specificities of each case.3,4

When transmission and severity of infectious diseases are concerned, it is very hard to know 
whether different genotypes of the pathogen are able to cause different clinical forms without 
knowing what the role of the host’s genetic diversity could also be. An integrated approach consists 
in analyzing both phenomena jointly and in including studies on the vector when researching 
vector-borne diseases. Even more specifically, it aims at dissecting the possible interactions be-
tween the three (co-evolution phenomena). The international congresses MEEGID (Molecular 
Epidemiology and Evolutionary Genetics of Infectious Diseases) and the journal Infection, Genetics 
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and Evolution (http://www.elsevier.com/locate/meegid) both aim to broaden the scope of this 
research by encouraging and practicing such an integrated approach. Interestingly, Chagas disease 
is an exemplary case for this approach.5 I will explain below why this is more than ever true today. 
I will start by describing today’s situation for each of the three actors: the pathogen, the vector(s) 
and the host(s).

Trypanosoma cruzi, World Champion of Pathogens for Population 
Genetics

The scientific community that works on Chagas is a tiny one. In fact, almost all of us know each 
other personally. It is like a big family, in which the contribution of the Latin American element 
has been and still is, prominent. Considering the small size of this group, T. cruzi would not be 
expected to be the pathogenic agent whose genetic diversity is among the best known, possibly 
more than the heavy weights Escherichia coli and Candida albicans. This fact leads me to advocate 
setting up T. cruzi as one of the landmark models of modern biology, together with the legendary 
E. coli, Drosophila melanogaster, Caenorhabditis elegans and Mus musculus. A historical view of 
how this unexpected situation came about is useful.

The Isoenzyme Saga
In the late 1960s and the 1970s, isoenzyme markers became immensely popular.6 Isoenzymes 

are electrophoretic variants of the same enzyme that reveal the sequence diversity of the genes 
that code for them (Fig. 1). For the first time, they made it possible to directly unravel the genetic 
diversity of organisms: population genetics stopped being a speculative affair and entered the en-
chanted world of direct observation. Thousands of papers based on what had quickly become the 
gold standard have been published, covering virtually the entire living reign. This made it possible 
to firmly establish the mendelian inheritance (codominant markers) of isoenzymes. Fortunately, 
bacteriologists and parasitologists did not miss the train and took advantage of the interesting 
properties of isoenzymes to clarify the subspecific variability and population structure of their 
pet bugs.7,8 This has been especially true for T. cruzi, in particular through the pioneering studies 
of Miles and collaborators9 and studies based on a population genetics approach by our group.10 
It is worth noting that all the results on the population structure and evolutionary pattern of T. 
cruzi based on isoenzymes have been fully confirmed by more fashionable molecular methods 
(see below).

Figure 1. An isoenzyme gel for the genetic locus Glucose phosphate isomerase (Gpi) showing 
the genetic polymorphism of different genetic subdivisions (discrete typing units; see text) of 
T. cruzi (experiment and photograph by Jenny Telleria, IRD Montpellier, France).
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The Molecular Biology Wave
In the 1980s, “the Maniatis”11 became the laboratory bible and young researchers dangerously 

started spotting their fingers with ethidium bromide, fascinated by the orange fluorescent band-
ing patterns visible on gels under UV light. In a flash, isoenzymers became nerdish. In the Chagas 
community, the first group to step on stage was Morel’s group,12 who showed off the very esthetic 
schizodeme profiles of strains (RFLP patterns of kinetoplast DNA). Many other molecular tech-
niques were later added to the display of strain typers, including miniexon gene polymorphism,13 
microsatellites14 and random primed polymorphic amplified DNA or RAPD,15 among others. All 
these studies revealed a striking pattern: they showed a constantly converging picture of T. cruzi 
subspecific variability, also congruent with the picture drawn by the nerdy isoenzymes. This was 
all grist for the population geneticists’ mill (see below).

The Sequencing, Genomic and Postgenomic Era
We are still in the midst of this revolution. T. cruzi was not left by the wayside in this new wave. 

Its genome is now fully sequenced.16 Several other strains are currently being sequenced as well (El 
Sayed, personal communication). Microarrays and proteomic analyses are on the way. The challenge 
is now to channel and filter the coming flood of data so that it remains informative. Fortunately, 
in the case of T. cruzi, theory came before the data flood and we have a robust population model 
available that provides a relevant framework for all studies investigating the genetic, genomic and 
phenotypic diversity of this parasite. The story is briefly expounded below.

Is T. cruzi a “Good” Species?
This is the first question to raise from an epidemiological point of view, especially where mo-

lecular epidemiology is concerned. Defining a good species refers to the definition of a species 
itself. Here is not the place to rekindle the debate.17 Briefly, species are generally defined as: (i) a 
mating community (the biological species concept) or (ii) a clade (a monophyletic line with only 
one ancestor; the phylogenetic species concept) or (iii) a set of organisms that share remarkable 
phenotypic traits (the phenotypic species concept). Undoubtedly, T. cruzi meets the criteria for 
(ii) and (iii). All phylogenetic studies have brought all T. cruzi strains into a unique clade that is 
distinguishable from closely related taxa (T. cruzi marenkellei, a close cousin of T. cruzi that para-
sitizes bats, is the best example of such an outgroup). Moreover, all T. cruzi strains share a set of 
specific phenotypic characters (morphological aspects, vectorial transmission by triatomine bugs, 
potential host range extended to all mammals, but restricted to them, geographical distribution 
limited to the new world, potential pathogenicity). Consequently, from the point of view of the 
phylogenetic and phenotypic concepts, T. cruzi is a good species. The fact that T. cruzi is a unique 
clade makes it possible to design many molecular markers that will be specifically shared by all 
strains of the taxon (in the cladistic jargon, synapomorphic characteristics; see also the concepts 
of DTU and tags below).

The Population Structure of T. cruzi: Sex or No Sex?
In the 1980s, T. cruzi found itself enrolled in the noisy clonality/sexuality debate that roused 

bacteriologists and parasitologists.18 There is now consensus that this parasite is somewhat of a 
paradigm of the preponderant clonal evolution model.19,20 This means that its multi-locus genotypes 
copy themselves like genetic photocopies and are extremely stable in space and time, even at an 
evolutionary scale. Two important features of the model, often neglected by scientists who read 
only the abstracts of the papers, are that: (i) sex (in the broad sense: any kind of genetic exchange 
between two different cells) is not supposed to be totally absent, but only rare and not frequent 
enough to break the prevalent pattern of clonality; (ii) clonality is taken here in its genetic meaning 
and refers to all situations where descendant multi-locus genotypes are virtually identical to parental 
genotypes, whatever the actual mating system. It could be mitotic clonality, or parthenogenesis, 
or an extreme selfing situation, or extreme homogamy.3

Scarcity or absence of genetic recombination has been established in T. cruzi by evidencing an 
extreme linkage disequilibrium (LD; nonrandom association of genotypes occurring at separated 
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loci), as shown in Figure 2. A striking manifestation of LD is that phylogenetic trees established 
from different genetic markers are very similar (Fig. 3). The contrary arises in those pathogens 
where recombination is abundant, such as the bacterium Helicobacter pylori.

The model has considerable implications in terms of applied research: (i) the stability of 
multi-locus genotypes makes them ideal targets for molecular epidemiology (strain typing and 
tracking); (ii) since genotypes are genetically separated from each other, their evolutionary fate is 
to accumulate more and more divergent mutations, including for those genes that govern medically 
relevant properties (pathogenicity, drug resistance). Clones that are genetically similar should tend 
to be also phenotypically similar and vice versa.

There is also a consensus on the number of genetic subdivisions that are observable within T. 
cruzi: there are two main clusters,3,13 which have been named by a group of anonymous experts 
T. cruzi I and T. cruzi II (TC I and II).21 TC II is itself subdivided into five lesser clusters (TC 
IIa-e).22 There has been a debate on the actual evolutionary nature of these clusters. The presence of 

Figure 2. Four electrophoretic experiments, two isoenzyme gels with two different genetic 
loci (top), two random primed amplified polymorphic DNA (RAPD) surveying two different 
genomic regions (bottom). The same T. cruzi strains are surveyed on the four gels; however, 
RAPD experiments have two additional strains. On the four gels, only rwo main genotypes 
(DTU 1 and DTU 2; see text) are observed; lines 1-7 and 8-12 for isoenzymes, lines 1-9 
and 10-14 for RAPD. M lines on RAPD gels are molecular weight ladders. Genotypes DTU 
1 are constantly linked together and the same is observed for genotypes DTU 2. Crossed 
genotypes, which would be the result of genetic recombination (for example gel A line 1/gel 
B line 8 � gel C line 1 � gel D line 10), have never been observed on more than 600 T. cruzi 
strains characterized by our team to date. This kind of strong association between genotypes 
occurring at different loci is by definition a linkage disequilibrium (see text) and is a manifes-
tation of preponderant clonal evolution in T. cruzi. Copyright 1993, Proc Natl Acad Sci USA. 
Tibayrenc M et al. 90:1335-39.15 
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some genetic recombination and hybrid genotypes prevents one from calling them clades. We have 
proposed the operational term of discrete typing units (DTU):1 sets of strains that are genetically 
more similar to each other than to any other strains and that share common molecular or serological 
markers (tags). This terminology is widely accepted in the Chagas research community.a We will 
henceforth refer to DTU I, IIa, IIb, IIc, IId and IIe. Figure 1 shows that isoenzyme electrophoresis 
shows drastically distintc patterns between T. cruzi DTUs.

As already noted, the clonal model does not state that sex (recombination) is absent, but only 
that it is rare and is not a mandatory mechanism of reproduction, as it is in humans and fruitflies. 
Several natural T. cruzi genotypes appear to have a hybrid origin, subsequently stabilized by clonal 
propagation.23-26 Moreover, the potential for genetic recombination in T. cruzi has been fully 
confirmed by experiments.27

The story therefore can be summarized as follows: T. cruzi undergoes predominant clonal evolu-
tion, which permits it to stabilize favorable genotypic combinations. Occasionally it mates, which 
makes it possible to rapidly generate new genotypes subsequently stabilized by clonal propagation. 
It is a typical case of reticulate evolution, a pattern also observed in many plant species.

The important facts to be kept in mind for the topic of this chapter: (i) the above-mentioned 
picture of subspecific variability could be refined; however, it is improbable that further studies 
will upset this picture. (ii) T. cruzi DTUs are robust units of analysis corroborated by many dif-
ferent studies, easy to specifically identify with appropriate tags. They actually behave like distinct 
taxa. They constitute convenient units of analysis for epidemiological tracking, applied research 
(vaccine and drug design) and experimental evolution studies.

However, a wide gap in our knowledge on T. cruzi’s genetic variability persists: the biological 
and epidemiological differences among T. cruzi clonal genotypes and DTUs remain imperfectly 
known. A relation between T. cruzi isoenzyme genotypes (zymodemes) and clinical forms of the 
disease has been long suspected,28 but never fully confirmed. Long-term experimental surveys 
in our laboratory have shown significant statistical associations between the genetic distances 
recorded among T. cruzi genotypes on one hand and biomedical differences on the other hand29-34 
(see also refs. 35-36). The biomedical properties that have been surveyed include growth speed 
in acellular and cell cultures, transmissibility through vectors, pathogenicity in mice and in vitro 
and in vivo susceptibility to antichagasic drugs (série). Only one study investigating in vitro drug 
sensitivity showed no statistical association.37 There is clearly “something” there when the working 
hypothesis of a link between T. cruzi genotypic and biological diversity is tested. However, the 
picture is far from black and white and the statistical sets are limited for the moment. An interesting 
hypothesis states that different T. cruzi genotypes have different organ tropisms.38 However, no 
firm conclusions have been reached on this point either. This long-term debate therefore remains 
partly unanswered.

The Second Actor: The Vector
It would be more accurate to say the vectors, for there are many of them. Triatomine bugs are 

true bugs (heteropterous). They make up a subfamily (Triatominae) within the family reduvidae, 
which are basically predator bugs. The triatominae turned out to be obligatory blood feeders, 
adults of both genders and larvae of all stages.

From a population genetics and evolutionary point of view, the harvest is not as plentiful as 
for T. cruzi. However, many studies have been conducted on triatomines, which makes them a 
rather well-known group.

It is now strongly suspected that the adaptative trait of strict hematophagy occurred several times 
in the evolutionary history of reduviidae. The triatominae are thought to be a polyphyletic group 
(Schofield, personal communication). Three main genera are recorded in the triatomines: Rhodnius, 

a. In an expert meeting held in Buzios (Brazil), August 2009, in which the author participated, 
these DTUs have been validated. However, they have been renumbered I, IV, II, III, V, and 
VI, respectively.
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Triatoma and Panstrongylus. It is being debated whether each of these genera considered alone is 
monophyletic. Within these genera, many different species are able to transmit T. cruzi.39

Triatomines exhibit various interesting phenomena of partial speciation and sibling speciation, 
which makes them informative models for scientists interested in speciation processes. These situ-
ations have been conveniently explored by population genetics approaches.

Since the first pioneering isoenzyme studies of the 1980s,40 many population genetics and phy-
logenetics analyses have been conducted on various triatomine species with markers ranging from 
microsatellites41,42 to RAPD,43,44 mitochondrial genes45 and gene sequences.46-48 Interestingly, this 
rather classical molecular display has been completed by the complementary tools of cytogenetics49 
and morphometric analysis.42,50,51

The world of triatomine bugs is vast, with an extreme taxonomic, phylogenetic and ecological 
diversity, making this group a gold mine for population genetic and evolutionary studies.

Within the theme of the present chapter, an immense field of knowledge remains to be ex-
plored, with several unanswered key questions: (i) have all species of triatomines the same vectorial 
capacity (the answer is probably no); (ii) do species of the same genus tend to have comparable 
vectorial capacities; (iii) within the same species, do different populations have the same vecto-
rial capacity; (iv) are different strains, genetic clones and DTUs of T. cruzi equally transmitted by 
triatomine bugs; (v) more generally, what complex phenomena of co-evolution and co-adaptation 
exist between the vector and the pathogen.

The Host
Again, it is preferable to say the hosts, since all mammalian species are potentially able to be 

contaminated by T. cruzi. Triatomine bugs feed on birds as well; however, these animals are resistant 
to Chagas disease. The reservoir of the disease is therefore virtually unlimited, since wild mam-
mals as well as domestic animals are hosts. Chagas disease is a typical zoonosis. The transmission 
is enhanced by the fact that humans and domestic animals often live close together. For example, 
in Bolivia, farmers often have pet guinea pigs in their kitchen.

As for vector species, this wide range of mammalian host species provides abundant matter 
for co-evolution analyses, either in field surveys or in experimental studies. Dogs with their many 
breeds have been a choice model for experimental studies on T. cruzi pathogenicity.52-55 Of course 
mice remain the easiest model to handle in experimental Chagas disease.33,56,57 However, we still 
lack an overall picture of differential Chagas pathogenicity among different mammalian species and 
different populations and breeds of the same species. Moreover, the animal models do not clearly 
identify the candidate genes58 that could be involved in the susceptibility to Chagas disease.

As for the human species, it is quite unexpected that our knowledge of the impact of human 
genetic diversity on the severity and clinical diversity of Chagas disease is poorly known. By com-
parison, in this field, we know much more about malaria,59 tuberculosis,60 leprosy,61 schistosomiasis62 
and leishmaniosis.63 This is all the more astonishing since Chagas disease should constitute a very 
favorable case to study this problem, for two reasons:
 i. As for leprosy, the clinical phenotypes of the disease are quite clearly defined. It starts 

with an acute phase that can be discreet or on the contrary shows a severe septicemic 
syndrome. Approximately 10% of patients die at this stage. Those who survive enter the 
undetermined phase with no symptoms. Parasites hide in the cells. Unfortunately, after 
at few years, roughly 30% of patients begin showing symptomatic Chagas disease. The 
majority of them suffer from a cardiac form that leads to severe cardiac insufficiency. 
Digestive forms account for 3% of patent Chagas disease cases. They have the form of 
megacolon or megaesophagus. Some patients have a cardiac and digestive form. Some 
patients have no clinical symptoms, but have electrocardiogram abnormalities. Others 
have symptoms but negative serological tests.64 Lastly, there are great differences in the 
way that antichagasic drugs act on different patients.36 There is therefore a wide span of 
well-defined clinical forms to analyze in linkage studies.

 ii. Chagas disease strikes a range of genetically diverse human populations, including different 
ethnic groups (mainly Amerindians, Causasians, Africans and people of mixed ancestry) 
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that could exhibit different susceptibilities to the disease. For example, Aymara Indians 
in Bolivia and Peru have lived only on the Altiplano for several thousand years. They have 
therefore long been protected from Chagas disease, since triatomine bugs do not survive 
at such altitudes. Their immunity against the disease could be lesser than that of other 
Amerindian populations who have coexisted with triatomine bugs for a long time.

A debate of importance for studying genetic susceptibility to Chagas disease is to know whether 
chronic Chagas disease is actually an autoimmune disease65 or if the parasite is still present in the 
host’s cells and causes a chronic inflammatory response. Both PCR experiments and the classical 
xenodiagnosis strongly suggest that the second hypothesis holds true.

The meager results obtained on human genetic susceptibility to Chagas diseases and its vari-
ous clinical forms are now summarized. A familial component in the cardiac form of chronic 
Chagas disease has been suggested from a Brazilian study.66 These results clashed with the results 
obtained from an Argentinian survey.67 HLA polymorphism associated with Chagas disease 
has been analyzed in many studies. Some of them reported a total lack of association,68 while 
on the contrary other research observed associations.69 Some serological parameters seem to 
exhibit a notable heritability, as evidenced by extended pedigrees. In Brazil, the heritability 
of Chagas seropositivity would be no less than 0.556.70 More specifically, the heritability of 
the IgA and IgG levels would be 0.33.71 I have myself observed that many subjects in Bolivia 
seem to be quite resistant to Chagas disease contamination. In some areas where 100% of the 
thousands of triatomine bugs I have collected harbored T. cruzi, only 50% of the children who 
lived in those areas were seropositive. Nevertheless, all these children had been bitten hundreds 
or thousands of times in their lifetime.

To make a long story short, our knowledge on the role of human genetic diversity on Chagas 
transmission, severity and clinical polymorphism is extremely patchy and contradictory. This is 
the weak spot in the array of knowledge needed to design an integrated genetic epidemiology 
approach of Chagas disease.

The Future
Chagas disease could become a paradigm academic case for an integrated genetic epidemiol-

ogy approach to transmissible diseases.5 However, we still are far from this goal. Our knowledge 
on the parasite’s genetic diversity is fairly advanced. Thanks to phylogenetic/population genetic/
morphometric studies, the complexity of the world of triatomine bugs is being deciphered little by 
little. Although the role of the host’s genetics remains poorly known, it is only a matter of applying 
the necessary effort. A black hole remains in our knowledge on the interactions and reciprocal 
impact between these three components. Actually, this is the case for all transmissible diseases. 
Research is strongly compartmentalized and parasitologists, entomologists and human/mammal 
geneticists rarely interact.

In the case of Chagas disease, the gaps in our knowledge could be filled using two 
approaches:

Field Studies
New powerful technologies (high-throughput sequencing, genome-wide scanning, microarrays, 

real-time PCR, high-resolution morphometric analysis) should make it possible to considerably 
improve our knowledge on the parasite, the vector and the host.

When humans are considered, as it is the case for any disease, studies on Chagas disease could 
greatly benefit from the megaprojects presently running on human genetic diversity, mainly the 
HapMap project (http://www.hapmap.org/). Genomics is presently making exponential progress 
and the few scientists working on human genetic susceptibility to Chagas disease should climb 
aboard this high-speed train. As emphasized above, in Chagas genetic epidemiology, the human 
side is the weak link in the chain. Of course studies dealing with the parasite and the vector 
would also greatly benefit from the impressive progress reached in genomics, proteomics and 
bioinformatics analysis.
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Although it is important that specialists working on the parasite, the vector and the host con-
tinue developing their specific fields, our knowledge on these actors sorely needs them to interact 
more, including in field studies. It is crucial that epidemiologists, mammalogists, entomologists, 
human geneticists and clinicians include parasite isolation and characterization in their programs, 
so that it is better known, for example, which T. cruzi genotypes are more frequently harbored by 
given populations of given triatomine bug species, or more frequently isolated from given clini-
cal forms of the disease. Such goals should be attainable by setting up multidisciplinary research 
consortia. Networking organizations would be an efficient means to attract valuable sources of 
funding. The long-term goal is to build an integrated population genomic approach,72 joining 
together genomic and postgenomic studies investigating the pathogen, the vector and the host at 
the population level. Obviously, such an ambitious approach can be accomplished by extended 
collaborations between many teams of diversified expertise only.

Experimental Evolution
Integrated genetic epidemiology in the field is hard and involves heavy research protocols. 

Experiments on the evolution of Chagas disease are easier to design, since Chagas disease is an 
extremely favorable model for this kind of approach5 and a complete Chagas transmission cycle 
is easy to maintain in experiments. The parasite is easy (although harmful) to culture, either in 
acellular or in cell (Vero cells) cultures. Many triatomine bug species are easy to rear in the labora-
tory. Various mice breeds can be infected by T. cruzi. Other laboratory animals such as dogs can 
also be used. A complete transmission cycle can even be maintained without laboratory animals 
by using artificial feeding devices for triatomine bugs. It is therefore quite feasible to survey the 
interactions between the parasite’s, the host’s and the vector’s genetic variability by varying only 
one parameter at a time. A promising avenue of research is to explore the interactions between 
mixtures of T. cruzi genotypes, a situation that is frequent in natural cycles, in vectors as well as in 
Chagas disease patients. Our working hypothesis is that there is some sort of cooperation between 
different clonal genotypes that infect a single host (Ann Rev gen), so that the whole is more than 
the sum of the parts. This seems to have been verified in a number of preliminary experiments 
involving such mixtures of clonal genotypes.34

Conclusion
Chagas disease potentially constitutes a paradigm model for the integrated genetic epidemiol-

ogy and integrated population genomic approaches. However, the Chagas scientific community, 
although talented, is tiny, a handicap in reaching this goal. It is therefore indispensable to attract 
other scientists to the enterprise. This is why it is crucial to sell T. cruzi and Chagas disease as a 
reference model for basic biology and evolution, as it is the case for Escherichia coli, Candida 
albicans, Caenorhabditis elegans, Mus musculus and Drosophila melanogaster.
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